Margarita Davydova, Nathanan Tantivasadakarn, Shankar Balasubramanian, David Aasen
{"title":"来自动态自动码的量子计算","authors":"Margarita Davydova, Nathanan Tantivasadakarn, Shankar Balasubramanian, David Aasen","doi":"10.22331/q-2024-08-27-1448","DOIUrl":null,"url":null,"abstract":"We propose a new model of quantum computation comprised of low-weight measurement sequences that simultaneously encode logical information, enable error correction, and apply logical gates. These measurement sequences constitute a new class of quantum error-correcting codes generalizing Floquet codes, which we call dynamic automorphism (DA) codes. We construct an explicit example, the DA color code, which is assembled from short measurement sequences that can realize all 72 automorphisms of the 2D color code. On a stack of $N$ triangular patches, the DA color code encodes $N$ logical qubits and can implement the full logical Clifford group by a sequence of two- and, more rarely, three-qubit Pauli measurements. We also make the first step towards universal quantum computation with DA codes by introducing a 3D DA color code and showing that a non-Clifford logical gate can be realized by adaptive two-qubit measurements.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"51 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum computation from dynamic automorphism codes\",\"authors\":\"Margarita Davydova, Nathanan Tantivasadakarn, Shankar Balasubramanian, David Aasen\",\"doi\":\"10.22331/q-2024-08-27-1448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new model of quantum computation comprised of low-weight measurement sequences that simultaneously encode logical information, enable error correction, and apply logical gates. These measurement sequences constitute a new class of quantum error-correcting codes generalizing Floquet codes, which we call dynamic automorphism (DA) codes. We construct an explicit example, the DA color code, which is assembled from short measurement sequences that can realize all 72 automorphisms of the 2D color code. On a stack of $N$ triangular patches, the DA color code encodes $N$ logical qubits and can implement the full logical Clifford group by a sequence of two- and, more rarely, three-qubit Pauli measurements. We also make the first step towards universal quantum computation with DA codes by introducing a 3D DA color code and showing that a non-Clifford logical gate can be realized by adaptive two-qubit measurements.\",\"PeriodicalId\":20807,\"journal\":{\"name\":\"Quantum\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.22331/q-2024-08-27-1448\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2024-08-27-1448","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
我们提出了一种新的量子计算模型,它由同时编码逻辑信息、实现纠错和应用逻辑门的低量测量序列组成。这些测量序列构成了一类新的量子纠错码,概括了 Floquet 码,我们称之为动态自动变形(DA)码。我们构建了一个明确的例子--DA 色码,它由短测量序列组合而成,可以实现二维色码的所有 72 个自动变形。在一个由 N$ 三角形补丁组成的堆栈上,DA 色码编码 N$ 逻辑量子比特,并能通过一个二量子比特序列(更罕见的是三量子比特保利测量序列)实现完整的逻辑克利福德群。我们还通过引入三维 DA 颜色码,证明非克利福德逻辑门可以通过自适应二量子比特测量来实现,从而向使用 DA 码进行通用量子计算迈出了第一步。
Quantum computation from dynamic automorphism codes
We propose a new model of quantum computation comprised of low-weight measurement sequences that simultaneously encode logical information, enable error correction, and apply logical gates. These measurement sequences constitute a new class of quantum error-correcting codes generalizing Floquet codes, which we call dynamic automorphism (DA) codes. We construct an explicit example, the DA color code, which is assembled from short measurement sequences that can realize all 72 automorphisms of the 2D color code. On a stack of $N$ triangular patches, the DA color code encodes $N$ logical qubits and can implement the full logical Clifford group by a sequence of two- and, more rarely, three-qubit Pauli measurements. We also make the first step towards universal quantum computation with DA codes by introducing a 3D DA color code and showing that a non-Clifford logical gate can be realized by adaptive two-qubit measurements.
QuantumPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍:
Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.