具有最佳时间依赖性的低能状态的哈密顿模拟

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Quantum Pub Date : 2024-08-27 DOI:10.22331/q-2024-08-27-1449
Alexander Zlokapa, Rolando D. Somma
{"title":"具有最佳时间依赖性的低能状态的哈密顿模拟","authors":"Alexander Zlokapa, Rolando D. Somma","doi":"10.22331/q-2024-08-27-1449","DOIUrl":null,"url":null,"abstract":"We consider the task of simulating time evolution under a Hamiltonian $H$ within its low-energy subspace. Assuming access to a block-encoding of $H':=(H-E)/\\lambda$, for some $\\lambda \\gt 0$ and $E \\in \\mathbb R$, the goal is to implement an $\\epsilon$-approximation to the evolution operator $e^{-itH}$ when the initial state is confined to the subspace corresponding to eigenvalues $[-1, -1+\\Delta/\\lambda]$ of $H'$, for $\\Delta \\leq \\lambda$. We present a quantum algorithm that requires $\\mathcal{O}(t\\sqrt{\\lambda\\Gamma} + \\sqrt{\\lambda/\\Gamma}\\log(1/\\epsilon))$ queries to the block-encoding for any choice of $\\Gamma$ such that $\\Delta \\leq \\Gamma \\leq \\lambda$. When the parameters satisfy $\\log(1/\\epsilon) = o(t\\lambda)$ and $\\Delta/\\lambda = o(1)$, this result improves over generic methods with query complexity $\\Omega(t\\lambda)$. Our quantum algorithm leverages spectral gap amplification and the quantum singular value transform.<br/>\n<br/> For a given $H$, the block-encoding of its $H'$ must be prepared efficiently to achieve an asymptotic speedup in simulating the low-energy subspace; we refer to these Hamiltonians as $gap-amplifiable$. We show necessary and sufficient conditions for gap amplifiability in terms of an operationally useful decomposition of $H$ into a sum of squares. Gap-amplifiable Hamiltonians include physically relevant examples such as frustration-free systems, and it encompasses all previously considered settings of low energy simulation algorithms. Any Hamiltonian can be expressed as a gap-amplifiable Hamiltonian after simple transformations, and our algorithm retains the asymptotic improvement over generic methods as long as the conditions on the parameters are met.<br/>\n<br/> We also provide lower bounds for simulating dynamics of low-energy states. In the worst case, we show that the low-energy condition cannot be used to improve the runtime of Hamiltonian simulation methods. For gap-amplifiable Hamiltonians, we prove that our algorithm is tight in the query model with respect to $t$, $\\Delta$, and $\\lambda$. In the practically relevant regime where $\\log (1/\\epsilon) = o(t\\Delta)$ and $\\Delta/\\lambda = o(1)$, we also prove a matching lower bound in gate complexity (up to logarithmic factors). To establish the query lower bounds, we consider oracular problems including search and $\\mathrm{PARITY}\\circ\\mathrm{OR}$, and also bounds on the degrees of trigonometric polynomials. To establish the lower bound on gate complexity, we use a circuit-to-Hamiltonian reduction, where a “clock Hamiltonian'' acting on a low-energy state can simulate any quantum circuit.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"29 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hamiltonian simulation for low-energy states with optimal time dependence\",\"authors\":\"Alexander Zlokapa, Rolando D. Somma\",\"doi\":\"10.22331/q-2024-08-27-1449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the task of simulating time evolution under a Hamiltonian $H$ within its low-energy subspace. Assuming access to a block-encoding of $H':=(H-E)/\\\\lambda$, for some $\\\\lambda \\\\gt 0$ and $E \\\\in \\\\mathbb R$, the goal is to implement an $\\\\epsilon$-approximation to the evolution operator $e^{-itH}$ when the initial state is confined to the subspace corresponding to eigenvalues $[-1, -1+\\\\Delta/\\\\lambda]$ of $H'$, for $\\\\Delta \\\\leq \\\\lambda$. We present a quantum algorithm that requires $\\\\mathcal{O}(t\\\\sqrt{\\\\lambda\\\\Gamma} + \\\\sqrt{\\\\lambda/\\\\Gamma}\\\\log(1/\\\\epsilon))$ queries to the block-encoding for any choice of $\\\\Gamma$ such that $\\\\Delta \\\\leq \\\\Gamma \\\\leq \\\\lambda$. When the parameters satisfy $\\\\log(1/\\\\epsilon) = o(t\\\\lambda)$ and $\\\\Delta/\\\\lambda = o(1)$, this result improves over generic methods with query complexity $\\\\Omega(t\\\\lambda)$. Our quantum algorithm leverages spectral gap amplification and the quantum singular value transform.<br/>\\n<br/> For a given $H$, the block-encoding of its $H'$ must be prepared efficiently to achieve an asymptotic speedup in simulating the low-energy subspace; we refer to these Hamiltonians as $gap-amplifiable$. We show necessary and sufficient conditions for gap amplifiability in terms of an operationally useful decomposition of $H$ into a sum of squares. Gap-amplifiable Hamiltonians include physically relevant examples such as frustration-free systems, and it encompasses all previously considered settings of low energy simulation algorithms. Any Hamiltonian can be expressed as a gap-amplifiable Hamiltonian after simple transformations, and our algorithm retains the asymptotic improvement over generic methods as long as the conditions on the parameters are met.<br/>\\n<br/> We also provide lower bounds for simulating dynamics of low-energy states. In the worst case, we show that the low-energy condition cannot be used to improve the runtime of Hamiltonian simulation methods. For gap-amplifiable Hamiltonians, we prove that our algorithm is tight in the query model with respect to $t$, $\\\\Delta$, and $\\\\lambda$. In the practically relevant regime where $\\\\log (1/\\\\epsilon) = o(t\\\\Delta)$ and $\\\\Delta/\\\\lambda = o(1)$, we also prove a matching lower bound in gate complexity (up to logarithmic factors). To establish the query lower bounds, we consider oracular problems including search and $\\\\mathrm{PARITY}\\\\circ\\\\mathrm{OR}$, and also bounds on the degrees of trigonometric polynomials. To establish the lower bound on gate complexity, we use a circuit-to-Hamiltonian reduction, where a “clock Hamiltonian'' acting on a low-energy state can simulate any quantum circuit.\",\"PeriodicalId\":20807,\"journal\":{\"name\":\"Quantum\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.22331/q-2024-08-27-1449\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2024-08-27-1449","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的任务是在低能子空间内模拟哈密顿方程 $H$ 下的时间演化。假设可以获得 $H':=(H-E)/\lambda$, for some $\lambda \gt 0$ and $E \in \mathbb R$, the goal is to implement an $\epsilon$-approximation to the evolution operator $e^{-itH}$ when the initial state is confined to the subspace corresponding to eigenvalues $[-1, -1+\Delta/\lambda]$ of $H'$, for $\Delta \leq \lambda$.我们提出了一种量子算法,它需要 $\mathcal{O}(t\sqrt\{lambda\Gamma} + \sqrt{/lambda//Gamma}\log(1/epsilon))$对任意选择的$\Gamma$进行块编码查询,使得$\Delta \leq \Gamma \leq \lambda$。当参数满足$\log(1/epsilon) = o(t/lambda)$和$\Delta/\lambda = o(1)$时,这个结果比查询复杂度为$\Omega(t/lambda)$的一般方法要好。我们的量子算法利用了频谱间隙放大和量子奇异值变换。对于给定的 $H$,其 $H'$ 的块编码必须高效准备,以实现模拟低能子空间的渐近加速;我们把这些哈密顿称作 $gap-amplable$。我们通过将 $H$ 分解为一个平方和的实用操作方法,展示了间隙可放大性的必要条件和充分条件。间隙可放大哈密顿数包括与物理相关的例子,如无挫折系统,它涵盖了以前考虑过的所有低能量模拟算法设置。任何哈密顿都可以在简单变换后表示为可间隙放大哈密顿,只要参数条件满足,我们的算法就能保持对一般方法的渐进改进。我们还提供了模拟低能态动力学的下限。在最坏的情况下,我们证明低能条件不能用来改善哈密顿模拟方法的运行时间。对于间隙可放大的哈密顿,我们证明了我们的算法在查询模型中与 $t$、$\Delta$ 和 $\lambda$ 有关是紧密的。在$\log (1/\epsilon) = o(t/\Delta)$和$\Delta/\lambda = o(1)$的实际相关机制中,我们还证明了门复杂度的匹配下限(达到对数因子)。为了建立查询下界,我们考虑了包括搜索和 $\mathrm{PARITY}\circ\mathrm{OR}$ 在内的奥拉格问题,以及三角多项式的度数下界。为了建立门复杂性的下界,我们使用了电路到哈密顿的还原,其中作用于低能态的 "时钟哈密顿 "可以模拟任何量子电路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hamiltonian simulation for low-energy states with optimal time dependence
We consider the task of simulating time evolution under a Hamiltonian $H$ within its low-energy subspace. Assuming access to a block-encoding of $H':=(H-E)/\lambda$, for some $\lambda \gt 0$ and $E \in \mathbb R$, the goal is to implement an $\epsilon$-approximation to the evolution operator $e^{-itH}$ when the initial state is confined to the subspace corresponding to eigenvalues $[-1, -1+\Delta/\lambda]$ of $H'$, for $\Delta \leq \lambda$. We present a quantum algorithm that requires $\mathcal{O}(t\sqrt{\lambda\Gamma} + \sqrt{\lambda/\Gamma}\log(1/\epsilon))$ queries to the block-encoding for any choice of $\Gamma$ such that $\Delta \leq \Gamma \leq \lambda$. When the parameters satisfy $\log(1/\epsilon) = o(t\lambda)$ and $\Delta/\lambda = o(1)$, this result improves over generic methods with query complexity $\Omega(t\lambda)$. Our quantum algorithm leverages spectral gap amplification and the quantum singular value transform.

For a given $H$, the block-encoding of its $H'$ must be prepared efficiently to achieve an asymptotic speedup in simulating the low-energy subspace; we refer to these Hamiltonians as $gap-amplifiable$. We show necessary and sufficient conditions for gap amplifiability in terms of an operationally useful decomposition of $H$ into a sum of squares. Gap-amplifiable Hamiltonians include physically relevant examples such as frustration-free systems, and it encompasses all previously considered settings of low energy simulation algorithms. Any Hamiltonian can be expressed as a gap-amplifiable Hamiltonian after simple transformations, and our algorithm retains the asymptotic improvement over generic methods as long as the conditions on the parameters are met.

We also provide lower bounds for simulating dynamics of low-energy states. In the worst case, we show that the low-energy condition cannot be used to improve the runtime of Hamiltonian simulation methods. For gap-amplifiable Hamiltonians, we prove that our algorithm is tight in the query model with respect to $t$, $\Delta$, and $\lambda$. In the practically relevant regime where $\log (1/\epsilon) = o(t\Delta)$ and $\Delta/\lambda = o(1)$, we also prove a matching lower bound in gate complexity (up to logarithmic factors). To establish the query lower bounds, we consider oracular problems including search and $\mathrm{PARITY}\circ\mathrm{OR}$, and also bounds on the degrees of trigonometric polynomials. To establish the lower bound on gate complexity, we use a circuit-to-Hamiltonian reduction, where a “clock Hamiltonian'' acting on a low-energy state can simulate any quantum circuit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
期刊最新文献
Flying Spin Qubits in Quantum Dot Arrays Driven by Spin-Orbit Interaction Time dependent Markovian master equation beyond the adiabatic limit Construction of perfect tensors using biunimodular vectors Inevitability of knowing less than nothing Constant-depth circuits for Boolean functions and quantum memory devices using multi-qubit gates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1