{"title":"量子多重异常检测","authors":"Santiago Llorens, Gael Sentís, Ramon Muñoz-Tapia","doi":"10.22331/q-2024-08-28-1452","DOIUrl":null,"url":null,"abstract":"A source assumed to prepare a specified reference state sometimes prepares an anomalous one. We address the task of identifying these anomalous states in a series of $n$ preparations with $k$ anomalies. We analyze the minimum-error protocol and the zero-error (unambiguous) protocol and obtain closed expressions for the success probability when both reference and anomalous states are known to the observer and anomalies can appear equally likely in any position of the preparation series. We find the solution using results from association schemes theory, thus establishing a connection between graph theory and quantum hypothesis testing. In particular, we use the Johnson association scheme which arises naturally from the Gram matrix of this problem. We also study the regime of large $n$ and obtain the expression of the success probability that is non-vanishing. Finally, we address the case in which the observer is blind to the reference and the anomalous states. This scenario requires a universal protocol for which we prove that in the asymptotic limit, the success probability corresponds to the average of the known state scenario.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"48 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum multi-anomaly detection\",\"authors\":\"Santiago Llorens, Gael Sentís, Ramon Muñoz-Tapia\",\"doi\":\"10.22331/q-2024-08-28-1452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A source assumed to prepare a specified reference state sometimes prepares an anomalous one. We address the task of identifying these anomalous states in a series of $n$ preparations with $k$ anomalies. We analyze the minimum-error protocol and the zero-error (unambiguous) protocol and obtain closed expressions for the success probability when both reference and anomalous states are known to the observer and anomalies can appear equally likely in any position of the preparation series. We find the solution using results from association schemes theory, thus establishing a connection between graph theory and quantum hypothesis testing. In particular, we use the Johnson association scheme which arises naturally from the Gram matrix of this problem. We also study the regime of large $n$ and obtain the expression of the success probability that is non-vanishing. Finally, we address the case in which the observer is blind to the reference and the anomalous states. This scenario requires a universal protocol for which we prove that in the asymptotic limit, the success probability corresponds to the average of the known state scenario.\",\"PeriodicalId\":20807,\"journal\":{\"name\":\"Quantum\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.22331/q-2024-08-28-1452\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2024-08-28-1452","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
A source assumed to prepare a specified reference state sometimes prepares an anomalous one. We address the task of identifying these anomalous states in a series of $n$ preparations with $k$ anomalies. We analyze the minimum-error protocol and the zero-error (unambiguous) protocol and obtain closed expressions for the success probability when both reference and anomalous states are known to the observer and anomalies can appear equally likely in any position of the preparation series. We find the solution using results from association schemes theory, thus establishing a connection between graph theory and quantum hypothesis testing. In particular, we use the Johnson association scheme which arises naturally from the Gram matrix of this problem. We also study the regime of large $n$ and obtain the expression of the success probability that is non-vanishing. Finally, we address the case in which the observer is blind to the reference and the anomalous states. This scenario requires a universal protocol for which we prove that in the asymptotic limit, the success probability corresponds to the average of the known state scenario.
QuantumPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍:
Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.