ERK 使果蝇的胚胎裂解同步化

IF 10.7 1区 生物学 Q1 CELL BIOLOGY Developmental cell Pub Date : 2024-08-28 DOI:10.1016/j.devcel.2024.08.004
Liu Yang, Audrey Zhu, Javed M. Aman, David Denberg, Marcus D. Kilwein, Robert A. Marmion, Alex N.T. Johnson, Alexey Veraksa, Mona Singh, Martin Wühr, Stanislav Y. Shvartsman
{"title":"ERK 使果蝇的胚胎裂解同步化","authors":"Liu Yang, Audrey Zhu, Javed M. Aman, David Denberg, Marcus D. Kilwein, Robert A. Marmion, Alex N.T. Johnson, Alexey Veraksa, Mona Singh, Martin Wühr, Stanislav Y. Shvartsman","doi":"10.1016/j.devcel.2024.08.004","DOIUrl":null,"url":null,"abstract":"<p>Extracellular-signal-regulated kinase (ERK) signaling controls development and homeostasis and is genetically deregulated in human diseases, including neurocognitive disorders and cancers. Although the list of ERK functions is vast and steadily growing, the full spectrum of processes controlled by any specific ERK activation event remains unknown. Here, we show how ERK functions can be systematically identified using targeted perturbations and global readouts of ERK activation. Our experimental model is the <em>Drosophila</em> embryo, where ERK signaling at the embryonic poles has thus far only been associated with the transcriptional patterning of the future larva. Through a combination of live imaging and phosphoproteomics, we demonstrated that ERK activation at the poles is also critical for maintaining the speed and synchrony of embryonic cleavages. The presented approach to interrogating phosphorylation networks identifies a hidden function of a well-studied signaling event and sets the stage for similar studies in other organisms.</p>","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"58 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ERK synchronizes embryonic cleavages in Drosophila\",\"authors\":\"Liu Yang, Audrey Zhu, Javed M. Aman, David Denberg, Marcus D. Kilwein, Robert A. Marmion, Alex N.T. Johnson, Alexey Veraksa, Mona Singh, Martin Wühr, Stanislav Y. Shvartsman\",\"doi\":\"10.1016/j.devcel.2024.08.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Extracellular-signal-regulated kinase (ERK) signaling controls development and homeostasis and is genetically deregulated in human diseases, including neurocognitive disorders and cancers. Although the list of ERK functions is vast and steadily growing, the full spectrum of processes controlled by any specific ERK activation event remains unknown. Here, we show how ERK functions can be systematically identified using targeted perturbations and global readouts of ERK activation. Our experimental model is the <em>Drosophila</em> embryo, where ERK signaling at the embryonic poles has thus far only been associated with the transcriptional patterning of the future larva. Through a combination of live imaging and phosphoproteomics, we demonstrated that ERK activation at the poles is also critical for maintaining the speed and synchrony of embryonic cleavages. The presented approach to interrogating phosphorylation networks identifies a hidden function of a well-studied signaling event and sets the stage for similar studies in other organisms.</p>\",\"PeriodicalId\":11157,\"journal\":{\"name\":\"Developmental cell\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Developmental cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.devcel.2024.08.004\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.devcel.2024.08.004","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

细胞外信号调节激酶(ERK)的信号转导控制着发育和体内平衡,并在人类疾病(包括神经认知障碍和癌症)中被基因调控。尽管ERK的功能繁多且在稳步增长,但任何特定的ERK激活事件所控制的全部过程仍然未知。在这里,我们展示了如何利用ERK活化的靶向扰动和全局读数系统地识别ERK功能。我们的实验模型是果蝇胚胎,迄今为止,胚胎两极的 ERK 信号传导只与未来幼虫的转录模式化有关。通过活体成像和磷酸化蛋白质组学的结合,我们证明了胚胎两极的ERK激活对于维持胚胎裂解的速度和同步性也至关重要。本文介绍的磷酸化网络研究方法发现了一个已被充分研究的信号转导事件的隐藏功能,为在其他生物体内开展类似研究奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ERK synchronizes embryonic cleavages in Drosophila

Extracellular-signal-regulated kinase (ERK) signaling controls development and homeostasis and is genetically deregulated in human diseases, including neurocognitive disorders and cancers. Although the list of ERK functions is vast and steadily growing, the full spectrum of processes controlled by any specific ERK activation event remains unknown. Here, we show how ERK functions can be systematically identified using targeted perturbations and global readouts of ERK activation. Our experimental model is the Drosophila embryo, where ERK signaling at the embryonic poles has thus far only been associated with the transcriptional patterning of the future larva. Through a combination of live imaging and phosphoproteomics, we demonstrated that ERK activation at the poles is also critical for maintaining the speed and synchrony of embryonic cleavages. The presented approach to interrogating phosphorylation networks identifies a hidden function of a well-studied signaling event and sets the stage for similar studies in other organisms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Developmental cell
Developmental cell 生物-发育生物学
CiteScore
18.90
自引率
1.70%
发文量
203
审稿时长
3-6 weeks
期刊介绍: Developmental Cell, established in 2001, is a comprehensive journal that explores a wide range of topics in cell and developmental biology. Our publication encompasses work across various disciplines within biology, with a particular emphasis on investigating the intersections between cell biology, developmental biology, and other related fields. Our primary objective is to present research conducted through a cell biological perspective, addressing the essential mechanisms governing cell function, cellular interactions, and responses to the environment. Moreover, we focus on understanding the collective behavior of cells, culminating in the formation of tissues, organs, and whole organisms, while also investigating the consequences of any malfunctions in these intricate processes.
期刊最新文献
The vertebrate segmentation clock drives segmentation by stabilizing Dusp phosphatases in zebrafish Adeno-associated viral tools to trace neural development and connectivity across amphibians Self-organized pattern formation in the developing mouse neural tube by a temporal relay of BMP signaling Development of an inducible DNA barcoding system to understand lineage changes in Arabidopsis regeneration Gene module reconstruction identifies cellular differentiation processes and the regulatory logic of specialized secretion in zebrafish
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1