Sergio Jiménez-Gambín;Sua Bae;Robin Ji;Fotios Tsitsos;Elisa E. Konofagou
{"title":"全息图辅助非人灵长类双侧血脑屏障开放的可行性。","authors":"Sergio Jiménez-Gambín;Sua Bae;Robin Ji;Fotios Tsitsos;Elisa E. Konofagou","doi":"10.1109/TUFFC.2024.3451289","DOIUrl":null,"url":null,"abstract":"Focused ultrasound (FUS) and microbubbles facilitate blood-brain barrier opening (BBBO) noninvasively, transiently, and safely for targeted drug delivery. Unlike state-of-the-art approaches, in this study, we demonstrate for the first time the simultaneous, bilateral BBBO in non-human primates (NHPs) using acoustic holograms at caudate and putamen structures. The simple and low-cost system with a single-element FUS transducer and 3-D printed acoustic hologram was guided by neuronavigation and a robotic arm. The advantages of holograms are transcranial aberration correction, simultaneous multifocus and high localization, and target-independent transducer positioning, defining a promising alternative for time- and cost-efficient FUS procedures. Holograms were designed with the k-space method by time-reversal techniques. T1-weighted MRI was used for treatment planning, while the computed tomography (CT) scan provided the head tissues acoustic properties. For the BBBO procedure, a robotic arm allowed transducer positioning errors below 0.1 mm and 0.1°. Following positioning, 0.5–0.6-MPa, 513-kHz microbubble-enhanced FUS was applied for 4 min. For BBBO assessment, Post-FUS T1-weighted MRI was acquired, and contrast enhancement indicated bilateral gadolinium extravasation at both caudate or putamen structures. The two BBBO locations were separated by 13.13 mm with a volume of 91.81 mm3 in the caudate, compared with 9.40 mm with a volume of 124.52 mm3 in simulation, while they were separated by 21.74 mm with a volume of 145.38 mm3 in the putamen and compared with 22.32 mm with a volume of 156.42 mm3 in simulation. No neurological damage was observed through T2-weighted and susceptibility-weighted imaging. This study demonstrates the feasibility and safety of hologram-assisted neuronavigation-guided-FUS for BBBO in NHP, providing thus an avenue for clinical translation.","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"71 10","pages":"1172-1185"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feasibility of Hologram-Assisted Bilateral Blood–Brain Barrier Opening in Non-Human Primates\",\"authors\":\"Sergio Jiménez-Gambín;Sua Bae;Robin Ji;Fotios Tsitsos;Elisa E. Konofagou\",\"doi\":\"10.1109/TUFFC.2024.3451289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Focused ultrasound (FUS) and microbubbles facilitate blood-brain barrier opening (BBBO) noninvasively, transiently, and safely for targeted drug delivery. Unlike state-of-the-art approaches, in this study, we demonstrate for the first time the simultaneous, bilateral BBBO in non-human primates (NHPs) using acoustic holograms at caudate and putamen structures. The simple and low-cost system with a single-element FUS transducer and 3-D printed acoustic hologram was guided by neuronavigation and a robotic arm. The advantages of holograms are transcranial aberration correction, simultaneous multifocus and high localization, and target-independent transducer positioning, defining a promising alternative for time- and cost-efficient FUS procedures. Holograms were designed with the k-space method by time-reversal techniques. T1-weighted MRI was used for treatment planning, while the computed tomography (CT) scan provided the head tissues acoustic properties. For the BBBO procedure, a robotic arm allowed transducer positioning errors below 0.1 mm and 0.1°. Following positioning, 0.5–0.6-MPa, 513-kHz microbubble-enhanced FUS was applied for 4 min. For BBBO assessment, Post-FUS T1-weighted MRI was acquired, and contrast enhancement indicated bilateral gadolinium extravasation at both caudate or putamen structures. The two BBBO locations were separated by 13.13 mm with a volume of 91.81 mm3 in the caudate, compared with 9.40 mm with a volume of 124.52 mm3 in simulation, while they were separated by 21.74 mm with a volume of 145.38 mm3 in the putamen and compared with 22.32 mm with a volume of 156.42 mm3 in simulation. No neurological damage was observed through T2-weighted and susceptibility-weighted imaging. This study demonstrates the feasibility and safety of hologram-assisted neuronavigation-guided-FUS for BBBO in NHP, providing thus an avenue for clinical translation.\",\"PeriodicalId\":13322,\"journal\":{\"name\":\"IEEE transactions on ultrasonics, ferroelectrics, and frequency control\",\"volume\":\"71 10\",\"pages\":\"1172-1185\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on ultrasonics, ferroelectrics, and frequency control\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10654640/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10654640/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
Feasibility of Hologram-Assisted Bilateral Blood–Brain Barrier Opening in Non-Human Primates
Focused ultrasound (FUS) and microbubbles facilitate blood-brain barrier opening (BBBO) noninvasively, transiently, and safely for targeted drug delivery. Unlike state-of-the-art approaches, in this study, we demonstrate for the first time the simultaneous, bilateral BBBO in non-human primates (NHPs) using acoustic holograms at caudate and putamen structures. The simple and low-cost system with a single-element FUS transducer and 3-D printed acoustic hologram was guided by neuronavigation and a robotic arm. The advantages of holograms are transcranial aberration correction, simultaneous multifocus and high localization, and target-independent transducer positioning, defining a promising alternative for time- and cost-efficient FUS procedures. Holograms were designed with the k-space method by time-reversal techniques. T1-weighted MRI was used for treatment planning, while the computed tomography (CT) scan provided the head tissues acoustic properties. For the BBBO procedure, a robotic arm allowed transducer positioning errors below 0.1 mm and 0.1°. Following positioning, 0.5–0.6-MPa, 513-kHz microbubble-enhanced FUS was applied for 4 min. For BBBO assessment, Post-FUS T1-weighted MRI was acquired, and contrast enhancement indicated bilateral gadolinium extravasation at both caudate or putamen structures. The two BBBO locations were separated by 13.13 mm with a volume of 91.81 mm3 in the caudate, compared with 9.40 mm with a volume of 124.52 mm3 in simulation, while they were separated by 21.74 mm with a volume of 145.38 mm3 in the putamen and compared with 22.32 mm with a volume of 156.42 mm3 in simulation. No neurological damage was observed through T2-weighted and susceptibility-weighted imaging. This study demonstrates the feasibility and safety of hologram-assisted neuronavigation-guided-FUS for BBBO in NHP, providing thus an avenue for clinical translation.
期刊介绍:
IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control includes the theory, technology, materials, and applications relating to: (1) the generation, transmission, and detection of ultrasonic waves and related phenomena; (2) medical ultrasound, including hyperthermia, bioeffects, tissue characterization and imaging; (3) ferroelectric, piezoelectric, and piezomagnetic materials, including crystals, polycrystalline solids, films, polymers, and composites; (4) frequency control, timing and time distribution, including crystal oscillators and other means of classical frequency control, and atomic, molecular and laser frequency control standards. Areas of interest range from fundamental studies to the design and/or applications of devices and systems.