Ana Luísa Pereira , Ute Suessbier , Karolina Zielinska , Anjali Vijaykumar , Alvaro Gomariz , Paul Büschl , Patrick Helbling , Stephan Isringhausen , Hui Chyn Wong , Takashi Nagasawa , Yokomizo Tomomasa , César Nombela-Arrieta
{"title":"2015 - 化疗期间骨髓基质网络的结构和功能分析","authors":"Ana Luísa Pereira , Ute Suessbier , Karolina Zielinska , Anjali Vijaykumar , Alvaro Gomariz , Paul Büschl , Patrick Helbling , Stephan Isringhausen , Hui Chyn Wong , Takashi Nagasawa , Yokomizo Tomomasa , César Nombela-Arrieta","doi":"10.1016/j.exphem.2024.104572","DOIUrl":null,"url":null,"abstract":"<div><p>Cytoreductive treatments, such as 5-fluorouracil (5-FU), are often used as conditioning regimens in bone marrow (BM) transplantation and cancer therapy, eliminating highly proliferative hematopoietic progenitor cells and partially damaging the BM microenvironment. While the responses of the hematopoietic compartment to irradiation and chemotherapy have been studied in detail, the impact of these treatments on specific stromal components is less understood.</p><p>Here, we employ customized 3D microscopy and image-based analytical pipelines to investigate the dynamics and kinetics of injury and repair following treatment with 5-FU on sinusoidal endothelial and arterial cells (SECs and AECs), and CXCL12-abundant reticular cells (CARc) within the regenerated BM, as well as mapping the spatial distribution of HSCs. Finally, we integrate scRNA-seq data to reveal compositional changes in stromal networks and pathways involved in tissue regeneration.</p><p>We report that i) contrary to previous reports, CARc mostly survive 5-FU treatments and their numbers remain largely unaltered as determined by 3D-QM ii) myeloablation causes severe structural damage to CARc and vascular networks and fragmentation of CARc mesh iii) despite this, SECs and CARc demonstrate significant regenerative potential, restoring structural integrity and quantitative morphometric parameters iv) the regeneration of BM stroma coincides with HSC recovery and re-entry into quiescence v) while stromal networks regain their structure, the transcriptomic landscapes of both EC and MSC subsets remain strongly perturbed even after 16 weeks post 5-FU. These findings show that stromal networks possess self-organizing capabilities for rapid structural repair, but 5-FU treatment leads to long-term molecular changes in stromal cells, potentially affecting their functional regulation of hematopoiesis and HSC maintenance.</p></div>","PeriodicalId":12202,"journal":{"name":"Experimental hematology","volume":"137 ","pages":"Article 104572"},"PeriodicalIF":2.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0301472X24004314/pdfft?md5=72585566b59a762552ab513086a2163e&pid=1-s2.0-S0301472X24004314-main.pdf","citationCount":"0","resultStr":"{\"title\":\"2015 – STRUCTURAL AND FUNCTIONAL ANALYSIS OF BONE MARROW STROMAL NETWORKS DURING CHEMOTHERAPY\",\"authors\":\"Ana Luísa Pereira , Ute Suessbier , Karolina Zielinska , Anjali Vijaykumar , Alvaro Gomariz , Paul Büschl , Patrick Helbling , Stephan Isringhausen , Hui Chyn Wong , Takashi Nagasawa , Yokomizo Tomomasa , César Nombela-Arrieta\",\"doi\":\"10.1016/j.exphem.2024.104572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cytoreductive treatments, such as 5-fluorouracil (5-FU), are often used as conditioning regimens in bone marrow (BM) transplantation and cancer therapy, eliminating highly proliferative hematopoietic progenitor cells and partially damaging the BM microenvironment. While the responses of the hematopoietic compartment to irradiation and chemotherapy have been studied in detail, the impact of these treatments on specific stromal components is less understood.</p><p>Here, we employ customized 3D microscopy and image-based analytical pipelines to investigate the dynamics and kinetics of injury and repair following treatment with 5-FU on sinusoidal endothelial and arterial cells (SECs and AECs), and CXCL12-abundant reticular cells (CARc) within the regenerated BM, as well as mapping the spatial distribution of HSCs. Finally, we integrate scRNA-seq data to reveal compositional changes in stromal networks and pathways involved in tissue regeneration.</p><p>We report that i) contrary to previous reports, CARc mostly survive 5-FU treatments and their numbers remain largely unaltered as determined by 3D-QM ii) myeloablation causes severe structural damage to CARc and vascular networks and fragmentation of CARc mesh iii) despite this, SECs and CARc demonstrate significant regenerative potential, restoring structural integrity and quantitative morphometric parameters iv) the regeneration of BM stroma coincides with HSC recovery and re-entry into quiescence v) while stromal networks regain their structure, the transcriptomic landscapes of both EC and MSC subsets remain strongly perturbed even after 16 weeks post 5-FU. These findings show that stromal networks possess self-organizing capabilities for rapid structural repair, but 5-FU treatment leads to long-term molecular changes in stromal cells, potentially affecting their functional regulation of hematopoiesis and HSC maintenance.</p></div>\",\"PeriodicalId\":12202,\"journal\":{\"name\":\"Experimental hematology\",\"volume\":\"137 \",\"pages\":\"Article 104572\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0301472X24004314/pdfft?md5=72585566b59a762552ab513086a2163e&pid=1-s2.0-S0301472X24004314-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental hematology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301472X24004314\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental hematology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301472X24004314","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEMATOLOGY","Score":null,"Total":0}
2015 – STRUCTURAL AND FUNCTIONAL ANALYSIS OF BONE MARROW STROMAL NETWORKS DURING CHEMOTHERAPY
Cytoreductive treatments, such as 5-fluorouracil (5-FU), are often used as conditioning regimens in bone marrow (BM) transplantation and cancer therapy, eliminating highly proliferative hematopoietic progenitor cells and partially damaging the BM microenvironment. While the responses of the hematopoietic compartment to irradiation and chemotherapy have been studied in detail, the impact of these treatments on specific stromal components is less understood.
Here, we employ customized 3D microscopy and image-based analytical pipelines to investigate the dynamics and kinetics of injury and repair following treatment with 5-FU on sinusoidal endothelial and arterial cells (SECs and AECs), and CXCL12-abundant reticular cells (CARc) within the regenerated BM, as well as mapping the spatial distribution of HSCs. Finally, we integrate scRNA-seq data to reveal compositional changes in stromal networks and pathways involved in tissue regeneration.
We report that i) contrary to previous reports, CARc mostly survive 5-FU treatments and their numbers remain largely unaltered as determined by 3D-QM ii) myeloablation causes severe structural damage to CARc and vascular networks and fragmentation of CARc mesh iii) despite this, SECs and CARc demonstrate significant regenerative potential, restoring structural integrity and quantitative morphometric parameters iv) the regeneration of BM stroma coincides with HSC recovery and re-entry into quiescence v) while stromal networks regain their structure, the transcriptomic landscapes of both EC and MSC subsets remain strongly perturbed even after 16 weeks post 5-FU. These findings show that stromal networks possess self-organizing capabilities for rapid structural repair, but 5-FU treatment leads to long-term molecular changes in stromal cells, potentially affecting their functional regulation of hematopoiesis and HSC maintenance.
期刊介绍:
Experimental Hematology publishes new findings, methodologies, reviews and perspectives in all areas of hematology and immune cell formation on a monthly basis that may include Special Issues on particular topics of current interest. The overall goal is to report new insights into how normal blood cells are produced, how their production is normally regulated, mechanisms that contribute to hematological diseases and new approaches to their treatment. Specific topics may include relevant developmental and aging processes, stem cell biology, analyses of intrinsic and extrinsic regulatory mechanisms, in vitro behavior of primary cells, clonal tracking, molecular and omics analyses, metabolism, epigenetics, bioengineering approaches, studies in model organisms, novel clinical observations, transplantation biology and new therapeutic avenues.