共同培养的嵌合脂肪组织和牙龈组织之间的相互作用加剧了与牙周和代谢状况相关的炎症功能障碍

IF 5.2 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Life sciences Pub Date : 2024-08-26 DOI:10.1016/j.lfs.2024.123009
{"title":"共同培养的嵌合脂肪组织和牙龈组织之间的相互作用加剧了与牙周和代谢状况相关的炎症功能障碍","authors":"","doi":"10.1016/j.lfs.2024.123009","DOIUrl":null,"url":null,"abstract":"<div><p>Adipose tissue dysfunction is a key feature of metabolic syndrome, which increases the risk of periodontitis, an inflammatory disease induced by bacteria that affects the gingiva and other components of periodontal tissue. Recent studies indicate that molecules from inflamed periodontal tissue contribute to adipose tissue dysfunction. However, the cellular mechanisms and interactions between adipose tissue and gingiva driving the progression of metabolic and periodontal conditions remain unclear. To address this, we developed a chimeric (mouse/human) co-culture tissue model (which identifies the origins of species-specific cytokines) to investigate these interactions. Using tissue-specific functional cells and immunocytes, we constructed equivalents of adipose tissue (ATE) and gingiva (GTE), co-cultivating them under inflammatory conditions induced by bacterial endotoxin, lipopolysaccharide (LPS). Our findings showed that exposure to LPS resulted in a notable reduction in lipid accumulation, GLUT4 expression, and adiponectin secretion in ATE, along with increased macrophage colonies forming around lipid droplets, as well as elevated levels of triglyceride, leptin, and IL-6. In GTE, LPS triggered significant inflammatory responses, characterized by increased macrophage accumulation, elevated COX-2 expression, and heightened secretion of inflammatory cytokines. LPS also reduced epithelial thickness and the expression of keratin 19 and collagen IV, indicating impaired barrier function and gingival integrity. Co-culturing ATE with GTE exacerbated these LPS-induced harmful effects in both tissues. In conclusion, our findings suggest that interplay between gingiva and adipose tissue can intensify the inflammatory and dysfunctional changes caused by LPS. This co-culture tissue model offers a valuable tool for future studies on periodontitis and metabolic syndrome.</p></div>","PeriodicalId":18122,"journal":{"name":"Life sciences","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interplay of co-cultured chimeric adipose and gingival tissues exacerbates inflammatory dysfunction relevant to periodontal and metabolic conditions\",\"authors\":\"\",\"doi\":\"10.1016/j.lfs.2024.123009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Adipose tissue dysfunction is a key feature of metabolic syndrome, which increases the risk of periodontitis, an inflammatory disease induced by bacteria that affects the gingiva and other components of periodontal tissue. Recent studies indicate that molecules from inflamed periodontal tissue contribute to adipose tissue dysfunction. However, the cellular mechanisms and interactions between adipose tissue and gingiva driving the progression of metabolic and periodontal conditions remain unclear. To address this, we developed a chimeric (mouse/human) co-culture tissue model (which identifies the origins of species-specific cytokines) to investigate these interactions. Using tissue-specific functional cells and immunocytes, we constructed equivalents of adipose tissue (ATE) and gingiva (GTE), co-cultivating them under inflammatory conditions induced by bacterial endotoxin, lipopolysaccharide (LPS). Our findings showed that exposure to LPS resulted in a notable reduction in lipid accumulation, GLUT4 expression, and adiponectin secretion in ATE, along with increased macrophage colonies forming around lipid droplets, as well as elevated levels of triglyceride, leptin, and IL-6. In GTE, LPS triggered significant inflammatory responses, characterized by increased macrophage accumulation, elevated COX-2 expression, and heightened secretion of inflammatory cytokines. LPS also reduced epithelial thickness and the expression of keratin 19 and collagen IV, indicating impaired barrier function and gingival integrity. Co-culturing ATE with GTE exacerbated these LPS-induced harmful effects in both tissues. In conclusion, our findings suggest that interplay between gingiva and adipose tissue can intensify the inflammatory and dysfunctional changes caused by LPS. This co-culture tissue model offers a valuable tool for future studies on periodontitis and metabolic syndrome.</p></div>\",\"PeriodicalId\":18122,\"journal\":{\"name\":\"Life sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Life sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002432052400599X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002432052400599X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

脂肪组织功能障碍是代谢综合征的一个主要特征,它会增加牙周炎的风险,牙周炎是一种由细菌诱发的炎症性疾病,会影响牙龈和牙周组织的其他成分。最近的研究表明,发炎的牙周组织分子会导致脂肪组织功能障碍。然而,脂肪组织和牙龈之间驱动新陈代谢和牙周病进展的细胞机制和相互作用仍不清楚。为了解决这个问题,我们开发了一种嵌合(小鼠/人类)共培养组织模型(可确定物种特异性细胞因子的来源)来研究这些相互作用。利用组织特异性功能细胞和免疫细胞,我们构建了等效的脂肪组织(ATE)和牙龈(GTE),在细菌内毒素脂多糖(LPS)诱导的炎症条件下对它们进行共培养。我们的研究结果表明,暴露于 LPS 会导致 ATE 中的脂质积累、GLUT4 表达和促脂素分泌明显减少,同时在脂滴周围形成的巨噬细胞集落增多,甘油三酯、瘦素和 IL-6 水平升高。在 GTE 中,LPS 引发了明显的炎症反应,表现为巨噬细胞聚集增加、COX-2 表达升高和炎性细胞因子分泌增多。LPS 还降低了上皮厚度以及角蛋白 19 和胶原蛋白 IV 的表达,表明屏障功能和牙龈完整性受损。将 ATE 与 GTE 共同培养会加剧 LPS 对这两种组织的有害影响。总之,我们的研究结果表明,牙龈和脂肪组织之间的相互作用会加剧 LPS 引起的炎症和功能障碍变化。这种共培养组织模型为今后研究牙周炎和代谢综合征提供了宝贵的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interplay of co-cultured chimeric adipose and gingival tissues exacerbates inflammatory dysfunction relevant to periodontal and metabolic conditions

Adipose tissue dysfunction is a key feature of metabolic syndrome, which increases the risk of periodontitis, an inflammatory disease induced by bacteria that affects the gingiva and other components of periodontal tissue. Recent studies indicate that molecules from inflamed periodontal tissue contribute to adipose tissue dysfunction. However, the cellular mechanisms and interactions between adipose tissue and gingiva driving the progression of metabolic and periodontal conditions remain unclear. To address this, we developed a chimeric (mouse/human) co-culture tissue model (which identifies the origins of species-specific cytokines) to investigate these interactions. Using tissue-specific functional cells and immunocytes, we constructed equivalents of adipose tissue (ATE) and gingiva (GTE), co-cultivating them under inflammatory conditions induced by bacterial endotoxin, lipopolysaccharide (LPS). Our findings showed that exposure to LPS resulted in a notable reduction in lipid accumulation, GLUT4 expression, and adiponectin secretion in ATE, along with increased macrophage colonies forming around lipid droplets, as well as elevated levels of triglyceride, leptin, and IL-6. In GTE, LPS triggered significant inflammatory responses, characterized by increased macrophage accumulation, elevated COX-2 expression, and heightened secretion of inflammatory cytokines. LPS also reduced epithelial thickness and the expression of keratin 19 and collagen IV, indicating impaired barrier function and gingival integrity. Co-culturing ATE with GTE exacerbated these LPS-induced harmful effects in both tissues. In conclusion, our findings suggest that interplay between gingiva and adipose tissue can intensify the inflammatory and dysfunctional changes caused by LPS. This co-culture tissue model offers a valuable tool for future studies on periodontitis and metabolic syndrome.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Life sciences
Life sciences 医学-药学
CiteScore
12.20
自引率
1.60%
发文量
841
审稿时长
6 months
期刊介绍: Life Sciences is an international journal publishing articles that emphasize the molecular, cellular, and functional basis of therapy. The journal emphasizes the understanding of mechanism that is relevant to all aspects of human disease and translation to patients. All articles are rigorously reviewed. The Journal favors publication of full-length papers where modern scientific technologies are used to explain molecular, cellular and physiological mechanisms. Articles that merely report observations are rarely accepted. Recommendations from the Declaration of Helsinki or NIH guidelines for care and use of laboratory animals must be adhered to. Articles should be written at a level accessible to readers who are non-specialists in the topic of the article themselves, but who are interested in the research. The Journal welcomes reviews on topics of wide interest to investigators in the life sciences. We particularly encourage submission of brief, focused reviews containing high-quality artwork and require the use of mechanistic summary diagrams.
期刊最新文献
Biochanin A-mediated anti-ferroptosis is associated with reduction of septic kidney injury Schwann cell autotransplantation for the treatment of peripheral nerve injury Sodium selenite inhibits cervical cancer progression via ROS-mediated suppression of glucose metabolic reprogramming Zinc pyrithione ameliorates colitis in mice by interacting on intestinal epithelial TRPA1 and TRPV4 channels Navigating therapeutic prospects by modulating autophagy in colorectal cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1