Raffaele Emanuele Russo , Muhammad Awais , Martina Fattobene , Elisa Santoni , Rebecca Cavallera , Silvia Zamponi , Paolo Conti , Mario Berrettoni , Gabriele Giuli
{"title":"利用湿法冶金和电化学技术从太阳能硅电池废料中回收银","authors":"Raffaele Emanuele Russo , Muhammad Awais , Martina Fattobene , Elisa Santoni , Rebecca Cavallera , Silvia Zamponi , Paolo Conti , Mario Berrettoni , Gabriele Giuli","doi":"10.1016/j.eti.2024.103803","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, hydrometallurgical and electrochemical methods were combined to achieve an innovative strategy for the effective recovery of the finest silver metal from silicon solar waste. The waste was thoroughly characterized by X-Ray diffraction, Scanning Electron Microscopy, X-Ray Absorption Spectroscopy, and Inductively Coupled Plasma Optical Emission Spectroscopy. A chemometric approach based on experimental design was used to find the best conditions for the leaching process based on a combined base-activated persulfate and ammonia system while a novel method known as electrodeposition-redox replacement was used to recover it. A remarkable pure silver recovery of 98.7±1.4 % was achieved. Additionally, Scanning Electron Microscopy analysis confirmed the enrichment of Ag particles on the electrode. Overall, these promising results showed how flexible the electrodeposition-redox replacement approach is in producing a range of valuable functional materials from intricate hydrometallurgical solutions including multiple metal impurities.</p></div>","PeriodicalId":11725,"journal":{"name":"Environmental Technology & Innovation","volume":"36 ","pages":"Article 103803"},"PeriodicalIF":6.7000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352186424002797/pdfft?md5=a649dc19c76b96f7407ea2b8930b8b2a&pid=1-s2.0-S2352186424002797-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Silver recovery from silicon solar cells waste by hydrometallurgical and electrochemical technique\",\"authors\":\"Raffaele Emanuele Russo , Muhammad Awais , Martina Fattobene , Elisa Santoni , Rebecca Cavallera , Silvia Zamponi , Paolo Conti , Mario Berrettoni , Gabriele Giuli\",\"doi\":\"10.1016/j.eti.2024.103803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, hydrometallurgical and electrochemical methods were combined to achieve an innovative strategy for the effective recovery of the finest silver metal from silicon solar waste. The waste was thoroughly characterized by X-Ray diffraction, Scanning Electron Microscopy, X-Ray Absorption Spectroscopy, and Inductively Coupled Plasma Optical Emission Spectroscopy. A chemometric approach based on experimental design was used to find the best conditions for the leaching process based on a combined base-activated persulfate and ammonia system while a novel method known as electrodeposition-redox replacement was used to recover it. A remarkable pure silver recovery of 98.7±1.4 % was achieved. Additionally, Scanning Electron Microscopy analysis confirmed the enrichment of Ag particles on the electrode. Overall, these promising results showed how flexible the electrodeposition-redox replacement approach is in producing a range of valuable functional materials from intricate hydrometallurgical solutions including multiple metal impurities.</p></div>\",\"PeriodicalId\":11725,\"journal\":{\"name\":\"Environmental Technology & Innovation\",\"volume\":\"36 \",\"pages\":\"Article 103803\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352186424002797/pdfft?md5=a649dc19c76b96f7407ea2b8930b8b2a&pid=1-s2.0-S2352186424002797-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Technology & Innovation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352186424002797\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology & Innovation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352186424002797","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
本研究结合湿法冶金和电化学方法,采用创新策略从太阳能硅废料中有效回收最优质的银金属。通过 X 射线衍射、扫描电子显微镜、X 射线吸收光谱和电感耦合等离子体光学发射光谱对废料进行了全面的表征。采用基于实验设计的化学计量学方法,找到了基于碱激活过硫酸盐和氨联合体系的浸出过程的最佳条件,同时采用了一种称为电沉积-氧化还原置换的新方法来回收银。纯银回收率高达 98.7±1.4 %。此外,扫描电子显微镜分析证实了电极上银颗粒的富集。总之,这些充满希望的结果表明,电沉积-氧化还原置换方法在从包括多种金属杂质的复杂湿法冶金溶液中生产一系列有价值的功能材料方面是多么灵活。
Silver recovery from silicon solar cells waste by hydrometallurgical and electrochemical technique
In this study, hydrometallurgical and electrochemical methods were combined to achieve an innovative strategy for the effective recovery of the finest silver metal from silicon solar waste. The waste was thoroughly characterized by X-Ray diffraction, Scanning Electron Microscopy, X-Ray Absorption Spectroscopy, and Inductively Coupled Plasma Optical Emission Spectroscopy. A chemometric approach based on experimental design was used to find the best conditions for the leaching process based on a combined base-activated persulfate and ammonia system while a novel method known as electrodeposition-redox replacement was used to recover it. A remarkable pure silver recovery of 98.7±1.4 % was achieved. Additionally, Scanning Electron Microscopy analysis confirmed the enrichment of Ag particles on the electrode. Overall, these promising results showed how flexible the electrodeposition-redox replacement approach is in producing a range of valuable functional materials from intricate hydrometallurgical solutions including multiple metal impurities.
期刊介绍:
Environmental Technology & Innovation adopts a challenge-oriented approach to solutions by integrating natural sciences to promote a sustainable future. The journal aims to foster the creation and development of innovative products, technologies, and ideas that enhance the environment, with impacts across soil, air, water, and food in rural and urban areas.
As a platform for disseminating scientific evidence for environmental protection and sustainable development, the journal emphasizes fundamental science, methodologies, tools, techniques, and policy considerations. It emphasizes the importance of science and technology in environmental benefits, including smarter, cleaner technologies for environmental protection, more efficient resource processing methods, and the evidence supporting their effectiveness.