{"title":"银河宇宙射线通量对希腊和利比亚极端降雨事件的影响","authors":"","doi":"10.1016/j.jastp.2024.106327","DOIUrl":null,"url":null,"abstract":"<div><p>The Galactic Cosmic Rays (GCR) flux can contribute to the formation of condensation nuclei (CN), radionuclides, and other particles, which in turn influence the formation of rain and extreme weather events. The aim of this analysis was to investigate the possible influence of GCR flux on the extreme rainfall events that occurred in Greece and Libya in September 2023. We used time series data for GCR, rainfall estimates from ERA5, and Sea Surface Temperature (SST) for the period between September 1, 2023, and September 11, 2023. The results revealed a negative correlation between GCR and SST of −0.807 (Greece) and −0.828 (Libya), and a positive correlation between precipitation and SST of +0.972 (Greece) and +0.998 (Libya). The GCR flux and SST accounted for approximately 60.52% and 34.53% of the extreme event in Greece, and 33.71% and 65.96% in Libya, respectively. These statistical results indicate that GCR flux contributed to the formation of the extreme precipitation event that caused significant destruction in Greece and Libya in September 2023.</p></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of galactic cosmic ray flux on extreme rainfall events in Greece and Libya\",\"authors\":\"\",\"doi\":\"10.1016/j.jastp.2024.106327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Galactic Cosmic Rays (GCR) flux can contribute to the formation of condensation nuclei (CN), radionuclides, and other particles, which in turn influence the formation of rain and extreme weather events. The aim of this analysis was to investigate the possible influence of GCR flux on the extreme rainfall events that occurred in Greece and Libya in September 2023. We used time series data for GCR, rainfall estimates from ERA5, and Sea Surface Temperature (SST) for the period between September 1, 2023, and September 11, 2023. The results revealed a negative correlation between GCR and SST of −0.807 (Greece) and −0.828 (Libya), and a positive correlation between precipitation and SST of +0.972 (Greece) and +0.998 (Libya). The GCR flux and SST accounted for approximately 60.52% and 34.53% of the extreme event in Greece, and 33.71% and 65.96% in Libya, respectively. These statistical results indicate that GCR flux contributed to the formation of the extreme precipitation event that caused significant destruction in Greece and Libya in September 2023.</p></div>\",\"PeriodicalId\":15096,\"journal\":{\"name\":\"Journal of Atmospheric and Solar-Terrestrial Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Atmospheric and Solar-Terrestrial Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S136468262400155X\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Solar-Terrestrial Physics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S136468262400155X","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Influence of galactic cosmic ray flux on extreme rainfall events in Greece and Libya
The Galactic Cosmic Rays (GCR) flux can contribute to the formation of condensation nuclei (CN), radionuclides, and other particles, which in turn influence the formation of rain and extreme weather events. The aim of this analysis was to investigate the possible influence of GCR flux on the extreme rainfall events that occurred in Greece and Libya in September 2023. We used time series data for GCR, rainfall estimates from ERA5, and Sea Surface Temperature (SST) for the period between September 1, 2023, and September 11, 2023. The results revealed a negative correlation between GCR and SST of −0.807 (Greece) and −0.828 (Libya), and a positive correlation between precipitation and SST of +0.972 (Greece) and +0.998 (Libya). The GCR flux and SST accounted for approximately 60.52% and 34.53% of the extreme event in Greece, and 33.71% and 65.96% in Libya, respectively. These statistical results indicate that GCR flux contributed to the formation of the extreme precipitation event that caused significant destruction in Greece and Libya in September 2023.
期刊介绍:
The Journal of Atmospheric and Solar-Terrestrial Physics (JASTP) is an international journal concerned with the inter-disciplinary science of the Earth''s atmospheric and space environment, especially the highly varied and highly variable physical phenomena that occur in this natural laboratory and the processes that couple them.
The journal covers the physical processes operating in the troposphere, stratosphere, mesosphere, thermosphere, ionosphere, magnetosphere, the Sun, interplanetary medium, and heliosphere. Phenomena occurring in other "spheres", solar influences on climate, and supporting laboratory measurements are also considered. The journal deals especially with the coupling between the different regions.
Solar flares, coronal mass ejections, and other energetic events on the Sun create interesting and important perturbations in the near-Earth space environment. The physics of such "space weather" is central to the Journal of Atmospheric and Solar-Terrestrial Physics and the journal welcomes papers that lead in the direction of a predictive understanding of the coupled system. Regarding the upper atmosphere, the subjects of aeronomy, geomagnetism and geoelectricity, auroral phenomena, radio wave propagation, and plasma instabilities, are examples within the broad field of solar-terrestrial physics which emphasise the energy exchange between the solar wind, the magnetospheric and ionospheric plasmas, and the neutral gas. In the lower atmosphere, topics covered range from mesoscale to global scale dynamics, to atmospheric electricity, lightning and its effects, and to anthropogenic changes.