{"title":"有重叠观测数据的低频因子模型回归估计和推论","authors":"Asad Dossani","doi":"10.1016/j.jempfin.2024.101536","DOIUrl":null,"url":null,"abstract":"<div><p>A low frequency factor model regression uses changes or returns computed at a lower frequency than data available. Using overlapping observations to estimate low frequency factor model regressions results in more efficient estimates of OLS coefficients and standard errors, relative to using independent observations or high frequency estimates. I derive the relevant inference and propose a new method to correct for the induced autocorrelation. I present a series of simulations and empirical examples to support the theoretical results. In tests of asset pricing models, using overlapping observations results in lower pricing errors, compared to existing alternatives.</p></div>","PeriodicalId":15704,"journal":{"name":"Journal of Empirical Finance","volume":"78 ","pages":"Article 101536"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation and inference in low frequency factor model regressions with overlapping observations\",\"authors\":\"Asad Dossani\",\"doi\":\"10.1016/j.jempfin.2024.101536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A low frequency factor model regression uses changes or returns computed at a lower frequency than data available. Using overlapping observations to estimate low frequency factor model regressions results in more efficient estimates of OLS coefficients and standard errors, relative to using independent observations or high frequency estimates. I derive the relevant inference and propose a new method to correct for the induced autocorrelation. I present a series of simulations and empirical examples to support the theoretical results. In tests of asset pricing models, using overlapping observations results in lower pricing errors, compared to existing alternatives.</p></div>\",\"PeriodicalId\":15704,\"journal\":{\"name\":\"Journal of Empirical Finance\",\"volume\":\"78 \",\"pages\":\"Article 101536\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Empirical Finance\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927539824000719\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Empirical Finance","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927539824000719","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
Estimation and inference in low frequency factor model regressions with overlapping observations
A low frequency factor model regression uses changes or returns computed at a lower frequency than data available. Using overlapping observations to estimate low frequency factor model regressions results in more efficient estimates of OLS coefficients and standard errors, relative to using independent observations or high frequency estimates. I derive the relevant inference and propose a new method to correct for the induced autocorrelation. I present a series of simulations and empirical examples to support the theoretical results. In tests of asset pricing models, using overlapping observations results in lower pricing errors, compared to existing alternatives.
期刊介绍:
The Journal of Empirical Finance is a financial economics journal whose aim is to publish high quality articles in empirical finance. Empirical finance is interpreted broadly to include any type of empirical work in financial economics, financial econometrics, and also theoretical work with clear empirical implications, even when there is no empirical analysis. The Journal welcomes articles in all fields of finance, such as asset pricing, corporate finance, financial econometrics, banking, international finance, microstructure, behavioural finance, etc. The Editorial Team is willing to take risks on innovative research, controversial papers, and unusual approaches. We are also particularly interested in work produced by young scholars. The composition of the editorial board reflects such goals.