Evelyn Claudia Quinteros Soria, Moacir Frutuoso Leal da Costa, Willam Trujillo Vera, Hugo Andersson Dantas Medeiros, Hosiberto Batista de Sant'Ana, Filipe Xavier Feitosa
{"title":"流体相平衡 二氧化碳 + 十烷 + 十六烷 三元系统","authors":"Evelyn Claudia Quinteros Soria, Moacir Frutuoso Leal da Costa, Willam Trujillo Vera, Hugo Andersson Dantas Medeiros, Hosiberto Batista de Sant'Ana, Filipe Xavier Feitosa","doi":"10.1016/j.fluid.2024.114214","DOIUrl":null,"url":null,"abstract":"<div><p>The interest in understanding reservoir fluids' phase behavior is to increase hydrocarbon production without any flow assurance issues. Due to its opacity, the evident complexity of determining phase equilibrium data revolves around the thermodynamic modeling of model systems. The article presents experimental phase equilibrium data and thermodynamic modeling for the CO<sub>2</sub> + decane + hexadecane ternary system at 283.15, 298.15, and 323.15 K and pressures up to 20 MPa. The transitions observed during this study were liquid-liquid (LL), vapor-liquid (VL), and vapor-liquid-liquid (VLL). The Peng-Robinson equation of state was used to model this ternary system for various compositions. The temperature-dependent binary interaction parameters (<em>k<sub>i</sub></em><sub>j</sub>) for the CO<sub>2</sub> + <em>n</em>-alkane mixtures were adjusted to the experimental data. Additionally, a binary interaction parameter for the n-C<sub>16</sub>H<sub>34</sub>/n-C<sub>10</sub>H<sub>22</sub> pair, independent of temperature, was obtained through the critical volume of the components. The results reveal complex behaviors as the mixture's composition of hexadecane progressively increases. Adding this longer-chain linear hydrocarbon influences the phase behavior, leading to the emergence of liquid-liquid transitions and barotropic inversion in the system. This study contributes valuable data on model systems representing crude oil, highlighting complex behaviors in ternary systems with high carbon dioxide content.</p></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"587 ","pages":"Article 114214"},"PeriodicalIF":2.8000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fluid Phase Equilibria Carbon Dioxide + Decane + Hexadecane Ternary System\",\"authors\":\"Evelyn Claudia Quinteros Soria, Moacir Frutuoso Leal da Costa, Willam Trujillo Vera, Hugo Andersson Dantas Medeiros, Hosiberto Batista de Sant'Ana, Filipe Xavier Feitosa\",\"doi\":\"10.1016/j.fluid.2024.114214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The interest in understanding reservoir fluids' phase behavior is to increase hydrocarbon production without any flow assurance issues. Due to its opacity, the evident complexity of determining phase equilibrium data revolves around the thermodynamic modeling of model systems. The article presents experimental phase equilibrium data and thermodynamic modeling for the CO<sub>2</sub> + decane + hexadecane ternary system at 283.15, 298.15, and 323.15 K and pressures up to 20 MPa. The transitions observed during this study were liquid-liquid (LL), vapor-liquid (VL), and vapor-liquid-liquid (VLL). The Peng-Robinson equation of state was used to model this ternary system for various compositions. The temperature-dependent binary interaction parameters (<em>k<sub>i</sub></em><sub>j</sub>) for the CO<sub>2</sub> + <em>n</em>-alkane mixtures were adjusted to the experimental data. Additionally, a binary interaction parameter for the n-C<sub>16</sub>H<sub>34</sub>/n-C<sub>10</sub>H<sub>22</sub> pair, independent of temperature, was obtained through the critical volume of the components. The results reveal complex behaviors as the mixture's composition of hexadecane progressively increases. Adding this longer-chain linear hydrocarbon influences the phase behavior, leading to the emergence of liquid-liquid transitions and barotropic inversion in the system. This study contributes valuable data on model systems representing crude oil, highlighting complex behaviors in ternary systems with high carbon dioxide content.</p></div>\",\"PeriodicalId\":12170,\"journal\":{\"name\":\"Fluid Phase Equilibria\",\"volume\":\"587 \",\"pages\":\"Article 114214\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluid Phase Equilibria\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378381224001894\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Phase Equilibria","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378381224001894","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
The interest in understanding reservoir fluids' phase behavior is to increase hydrocarbon production without any flow assurance issues. Due to its opacity, the evident complexity of determining phase equilibrium data revolves around the thermodynamic modeling of model systems. The article presents experimental phase equilibrium data and thermodynamic modeling for the CO2 + decane + hexadecane ternary system at 283.15, 298.15, and 323.15 K and pressures up to 20 MPa. The transitions observed during this study were liquid-liquid (LL), vapor-liquid (VL), and vapor-liquid-liquid (VLL). The Peng-Robinson equation of state was used to model this ternary system for various compositions. The temperature-dependent binary interaction parameters (kij) for the CO2 + n-alkane mixtures were adjusted to the experimental data. Additionally, a binary interaction parameter for the n-C16H34/n-C10H22 pair, independent of temperature, was obtained through the critical volume of the components. The results reveal complex behaviors as the mixture's composition of hexadecane progressively increases. Adding this longer-chain linear hydrocarbon influences the phase behavior, leading to the emergence of liquid-liquid transitions and barotropic inversion in the system. This study contributes valuable data on model systems representing crude oil, highlighting complex behaviors in ternary systems with high carbon dioxide content.
期刊介绍:
Fluid Phase Equilibria publishes high-quality papers dealing with experimental, theoretical, and applied research related to equilibrium and transport properties of fluids, solids, and interfaces. Subjects of interest include physical/phase and chemical equilibria; equilibrium and nonequilibrium thermophysical properties; fundamental thermodynamic relations; and stability. The systems central to the journal include pure substances and mixtures of organic and inorganic materials, including polymers, biochemicals, and surfactants with sufficient characterization of composition and purity for the results to be reproduced. Alloys are of interest only when thermodynamic studies are included, purely material studies will not be considered. In all cases, authors are expected to provide physical or chemical interpretations of the results.
Experimental research can include measurements under all conditions of temperature, pressure, and composition, including critical and supercritical. Measurements are to be associated with systems and conditions of fundamental or applied interest, and may not be only a collection of routine data, such as physical property or solubility measurements at limited pressures and temperatures close to ambient, or surfactant studies focussed strictly on micellisation or micelle structure. Papers reporting common data must be accompanied by new physical insights and/or contemporary or new theory or techniques.