{"title":"烷烃和芳烃二元混合物在 ZSM-5 沸石中的扩散行为:蒙特卡罗动力学研究","authors":"Brian Gray, John Kuhn, Babu Joseph","doi":"10.1002/aic.18590","DOIUrl":null,"url":null,"abstract":"<p>Diffusion of hydrocarbon species in an MFI-type zeolite was investigated using a coarse-grained approach combined with Kinetic Monte Carlo (KMC) simulations. The model was employed to capture and isolate the essential characteristics of hydrocarbon diffusion such as molecular pushing, passing, and blocking. A modified Lennard-Jones type forcefield was used to approximate interactions between molecules, and molecules with the oxygen in the zeolite lattice. The basis for the rate expressions is configurational diffusion theory, which has been adjusted to account for an accurate representation of the motions of hydrocarbon molecules trapped in the zeolite. Diffusion coefficients were estimated for low and high loading of single hydrocarbons as well as binary mixtures. In all cases studied, reasonable agreement was achieved with reported experimental data and molecular dynamics simulations. The model is conceptualized as an analytical tool that may be used to address key engineering topics such as applications of zeolites as size-selective barriers.</p>","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"70 12","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diffusion behaviors of binary mixtures of alkanes and aromatics through ZSM-5 zeolite: A kinetic Monte Carlo study\",\"authors\":\"Brian Gray, John Kuhn, Babu Joseph\",\"doi\":\"10.1002/aic.18590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Diffusion of hydrocarbon species in an MFI-type zeolite was investigated using a coarse-grained approach combined with Kinetic Monte Carlo (KMC) simulations. The model was employed to capture and isolate the essential characteristics of hydrocarbon diffusion such as molecular pushing, passing, and blocking. A modified Lennard-Jones type forcefield was used to approximate interactions between molecules, and molecules with the oxygen in the zeolite lattice. The basis for the rate expressions is configurational diffusion theory, which has been adjusted to account for an accurate representation of the motions of hydrocarbon molecules trapped in the zeolite. Diffusion coefficients were estimated for low and high loading of single hydrocarbons as well as binary mixtures. In all cases studied, reasonable agreement was achieved with reported experimental data and molecular dynamics simulations. The model is conceptualized as an analytical tool that may be used to address key engineering topics such as applications of zeolites as size-selective barriers.</p>\",\"PeriodicalId\":120,\"journal\":{\"name\":\"AIChE Journal\",\"volume\":\"70 12\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIChE Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aic.18590\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aic.18590","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Diffusion behaviors of binary mixtures of alkanes and aromatics through ZSM-5 zeolite: A kinetic Monte Carlo study
Diffusion of hydrocarbon species in an MFI-type zeolite was investigated using a coarse-grained approach combined with Kinetic Monte Carlo (KMC) simulations. The model was employed to capture and isolate the essential characteristics of hydrocarbon diffusion such as molecular pushing, passing, and blocking. A modified Lennard-Jones type forcefield was used to approximate interactions between molecules, and molecules with the oxygen in the zeolite lattice. The basis for the rate expressions is configurational diffusion theory, which has been adjusted to account for an accurate representation of the motions of hydrocarbon molecules trapped in the zeolite. Diffusion coefficients were estimated for low and high loading of single hydrocarbons as well as binary mixtures. In all cases studied, reasonable agreement was achieved with reported experimental data and molecular dynamics simulations. The model is conceptualized as an analytical tool that may be used to address key engineering topics such as applications of zeolites as size-selective barriers.
期刊介绍:
The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering.
The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field.
Articles are categorized according to the following topical areas:
Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food
Inorganic Materials: Synthesis and Processing
Particle Technology and Fluidization
Process Systems Engineering
Reaction Engineering, Kinetics and Catalysis
Separations: Materials, Devices and Processes
Soft Materials: Synthesis, Processing and Products
Thermodynamics and Molecular-Scale Phenomena
Transport Phenomena and Fluid Mechanics.