Simon J. Ring, Michael J. Henehan, Roberts Blukis, Friedhelm von Blanckenburg
{"title":"硼在粘土上的吸附途径及其对陆地和海洋硼循环的影响","authors":"Simon J. Ring, Michael J. Henehan, Roberts Blukis, Friedhelm von Blanckenburg","doi":"10.1016/j.gca.2024.08.014","DOIUrl":null,"url":null,"abstract":"Reversible adsorption and isotope fractionation of boron on the surface of clay minerals is a key process that impacts boron isotope cycling in porewater, rivers and the ocean. However, the differences in boron isotope fractionation factors between various clay minerals and their dependence on fluid chemistry are not well known. We performed two sets of experiments, using solutions of pure water with added boron and seawater, to explore the isotope behavior during adsorption of boron onto kaolinite, smectite and illite. We found that the amount of sorbed boron increases with ionic strength of solutions and is proportional to the cation exchange capacity of a given clay mineral. Maximum adsorption is observed in alkaline seawater, which we attribute to the efficient fixation of magnesium-borate ion pairs onto negatively charged surface sites. Isotopic fractionation is modestly different between clays and demonstrates that clay surfaces preferentially sorb borate, even when the concentration of borate in solution is low. In both pure water and seawater, adsorbed complexes retain the isotopic composition of their dissolved precursors (borate or boric acid) with minimal isotopic fractionation. In other words, isotopic composition of adsorbed boron is set by the ability of clays to adsorb boron from an already fractionated boron pool rather than specific fractionation associated with the complexation reaction. Our experimental results allow us to provide revised constraints on the adsorbed boron being transported in terrestrial fluids and the ocean.","PeriodicalId":327,"journal":{"name":"Geochimica et Cosmochimica Acta","volume":"23 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adsorption pathways of boron on clay and their implications for boron cycling on land and in the ocean\",\"authors\":\"Simon J. Ring, Michael J. Henehan, Roberts Blukis, Friedhelm von Blanckenburg\",\"doi\":\"10.1016/j.gca.2024.08.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reversible adsorption and isotope fractionation of boron on the surface of clay minerals is a key process that impacts boron isotope cycling in porewater, rivers and the ocean. However, the differences in boron isotope fractionation factors between various clay minerals and their dependence on fluid chemistry are not well known. We performed two sets of experiments, using solutions of pure water with added boron and seawater, to explore the isotope behavior during adsorption of boron onto kaolinite, smectite and illite. We found that the amount of sorbed boron increases with ionic strength of solutions and is proportional to the cation exchange capacity of a given clay mineral. Maximum adsorption is observed in alkaline seawater, which we attribute to the efficient fixation of magnesium-borate ion pairs onto negatively charged surface sites. Isotopic fractionation is modestly different between clays and demonstrates that clay surfaces preferentially sorb borate, even when the concentration of borate in solution is low. In both pure water and seawater, adsorbed complexes retain the isotopic composition of their dissolved precursors (borate or boric acid) with minimal isotopic fractionation. In other words, isotopic composition of adsorbed boron is set by the ability of clays to adsorb boron from an already fractionated boron pool rather than specific fractionation associated with the complexation reaction. Our experimental results allow us to provide revised constraints on the adsorbed boron being transported in terrestrial fluids and the ocean.\",\"PeriodicalId\":327,\"journal\":{\"name\":\"Geochimica et Cosmochimica Acta\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochimica et Cosmochimica Acta\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1016/j.gca.2024.08.014\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochimica et Cosmochimica Acta","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.gca.2024.08.014","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Adsorption pathways of boron on clay and their implications for boron cycling on land and in the ocean
Reversible adsorption and isotope fractionation of boron on the surface of clay minerals is a key process that impacts boron isotope cycling in porewater, rivers and the ocean. However, the differences in boron isotope fractionation factors between various clay minerals and their dependence on fluid chemistry are not well known. We performed two sets of experiments, using solutions of pure water with added boron and seawater, to explore the isotope behavior during adsorption of boron onto kaolinite, smectite and illite. We found that the amount of sorbed boron increases with ionic strength of solutions and is proportional to the cation exchange capacity of a given clay mineral. Maximum adsorption is observed in alkaline seawater, which we attribute to the efficient fixation of magnesium-borate ion pairs onto negatively charged surface sites. Isotopic fractionation is modestly different between clays and demonstrates that clay surfaces preferentially sorb borate, even when the concentration of borate in solution is low. In both pure water and seawater, adsorbed complexes retain the isotopic composition of their dissolved precursors (borate or boric acid) with minimal isotopic fractionation. In other words, isotopic composition of adsorbed boron is set by the ability of clays to adsorb boron from an already fractionated boron pool rather than specific fractionation associated with the complexation reaction. Our experimental results allow us to provide revised constraints on the adsorbed boron being transported in terrestrial fluids and the ocean.
期刊介绍:
Geochimica et Cosmochimica Acta publishes research papers in a wide range of subjects in terrestrial geochemistry, meteoritics, and planetary geochemistry. The scope of the journal includes:
1). Physical chemistry of gases, aqueous solutions, glasses, and crystalline solids
2). Igneous and metamorphic petrology
3). Chemical processes in the atmosphere, hydrosphere, biosphere, and lithosphere of the Earth
4). Organic geochemistry
5). Isotope geochemistry
6). Meteoritics and meteorite impacts
7). Lunar science; and
8). Planetary geochemistry.