{"title":"存在金属结构时的电磁地表下成像:数值策略综述","authors":"Octavio Castillo-Reyes, Pilar Queralt, Perla Piñas-Varas, Juanjo Ledo, Otilio Rojas","doi":"10.1007/s10712-024-09855-7","DOIUrl":null,"url":null,"abstract":"<div><p>Electromagnetic (EM) imaging aims to produce large-scale, high-resolution soil conductivity maps that provide essential information for Earth subsurface exploration. To rigorously generate EM subsurface models, one must address both the forward problem and the inverse problem. From these subsurface resistivity maps, also referred to as volumes of resistivity distribution, it is possible to extract useful information (lithology, temperature, porosity, permeability, among others) to improve our knowledge about geo-resources on which modern society depends (e.g., energy, groundwater, and raw materials, among others). However, this ability to detect electrical resistivity contrasts also makes EM imaging techniques sensitive to metallic structures whose EM footprint often exceeds their diminutive stature compared to surrounding materials. Depending on target applications, this behavior can be advantageous or disadvantageous. In this work, we review EM modeling and inverse solutions in the presence of metallic structures, emphasizing how these structures affect EM data acquisition and interpretation. By addressing the challenges posed by metallic structures, our aim is to enhance the accuracy and reliability of subsurface EM characterization, ultimately leading to improved management of geo-resources and environmental monitoring. Here, we consider the latter through the lens of a triple helix approach: physics behind metallic structures in EM modeling and imaging, development of computational tools (conventional strategies and artificial intelligence schemes), and configurations and applications. The literature review shows that, despite recent scientific advancements, EM imaging techniques are still being developed, as are software-based data processing and interpretation tools. Such progress must address geological complexities and metallic casing measurements integrity in increasing detail setups. We hope this review will provide inspiration for researchers to study the fascinating EM problem, as well as establishing a robust technological ecosystem to those interested in studying EM fields affected by metallic artifacts.</p></div>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"45 5","pages":"1627 - 1661"},"PeriodicalIF":4.9000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10712-024-09855-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Electromagnetic Subsurface Imaging in the Presence of Metallic Structures: A Review of Numerical Strategies\",\"authors\":\"Octavio Castillo-Reyes, Pilar Queralt, Perla Piñas-Varas, Juanjo Ledo, Otilio Rojas\",\"doi\":\"10.1007/s10712-024-09855-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Electromagnetic (EM) imaging aims to produce large-scale, high-resolution soil conductivity maps that provide essential information for Earth subsurface exploration. To rigorously generate EM subsurface models, one must address both the forward problem and the inverse problem. From these subsurface resistivity maps, also referred to as volumes of resistivity distribution, it is possible to extract useful information (lithology, temperature, porosity, permeability, among others) to improve our knowledge about geo-resources on which modern society depends (e.g., energy, groundwater, and raw materials, among others). However, this ability to detect electrical resistivity contrasts also makes EM imaging techniques sensitive to metallic structures whose EM footprint often exceeds their diminutive stature compared to surrounding materials. Depending on target applications, this behavior can be advantageous or disadvantageous. In this work, we review EM modeling and inverse solutions in the presence of metallic structures, emphasizing how these structures affect EM data acquisition and interpretation. By addressing the challenges posed by metallic structures, our aim is to enhance the accuracy and reliability of subsurface EM characterization, ultimately leading to improved management of geo-resources and environmental monitoring. Here, we consider the latter through the lens of a triple helix approach: physics behind metallic structures in EM modeling and imaging, development of computational tools (conventional strategies and artificial intelligence schemes), and configurations and applications. The literature review shows that, despite recent scientific advancements, EM imaging techniques are still being developed, as are software-based data processing and interpretation tools. Such progress must address geological complexities and metallic casing measurements integrity in increasing detail setups. We hope this review will provide inspiration for researchers to study the fascinating EM problem, as well as establishing a robust technological ecosystem to those interested in studying EM fields affected by metallic artifacts.</p></div>\",\"PeriodicalId\":49458,\"journal\":{\"name\":\"Surveys in Geophysics\",\"volume\":\"45 5\",\"pages\":\"1627 - 1661\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10712-024-09855-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surveys in Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10712-024-09855-7\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surveys in Geophysics","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10712-024-09855-7","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Electromagnetic Subsurface Imaging in the Presence of Metallic Structures: A Review of Numerical Strategies
Electromagnetic (EM) imaging aims to produce large-scale, high-resolution soil conductivity maps that provide essential information for Earth subsurface exploration. To rigorously generate EM subsurface models, one must address both the forward problem and the inverse problem. From these subsurface resistivity maps, also referred to as volumes of resistivity distribution, it is possible to extract useful information (lithology, temperature, porosity, permeability, among others) to improve our knowledge about geo-resources on which modern society depends (e.g., energy, groundwater, and raw materials, among others). However, this ability to detect electrical resistivity contrasts also makes EM imaging techniques sensitive to metallic structures whose EM footprint often exceeds their diminutive stature compared to surrounding materials. Depending on target applications, this behavior can be advantageous or disadvantageous. In this work, we review EM modeling and inverse solutions in the presence of metallic structures, emphasizing how these structures affect EM data acquisition and interpretation. By addressing the challenges posed by metallic structures, our aim is to enhance the accuracy and reliability of subsurface EM characterization, ultimately leading to improved management of geo-resources and environmental monitoring. Here, we consider the latter through the lens of a triple helix approach: physics behind metallic structures in EM modeling and imaging, development of computational tools (conventional strategies and artificial intelligence schemes), and configurations and applications. The literature review shows that, despite recent scientific advancements, EM imaging techniques are still being developed, as are software-based data processing and interpretation tools. Such progress must address geological complexities and metallic casing measurements integrity in increasing detail setups. We hope this review will provide inspiration for researchers to study the fascinating EM problem, as well as establishing a robust technological ecosystem to those interested in studying EM fields affected by metallic artifacts.
期刊介绍:
Surveys in Geophysics publishes refereed review articles on the physical, chemical and biological processes occurring within the Earth, on its surface, in its atmosphere and in the near-Earth space environment, including relations with other bodies in the solar system. Observations, their interpretation, theory and modelling are covered in papers dealing with any of the Earth and space sciences.