T. M. Gernon, B. J. W. Mills, T. K. Hincks, A. S. Merdith, L. J. Alcott, E. J. Rohling, M. R. Palmer
{"title":"中生代大洋缺氧事件的固体地球作用力","authors":"T. M. Gernon, B. J. W. Mills, T. K. Hincks, A. S. Merdith, L. J. Alcott, E. J. Rohling, M. R. Palmer","doi":"10.1038/s41561-024-01496-0","DOIUrl":null,"url":null,"abstract":"Oceanic anoxic events are geologically abrupt phases of extreme oxygen depletion in the oceans that disrupted marine ecosystems and brought about evolutionary turnover. Typically lasting ~1.5 million years, these events occurred frequently during the Mesozoic era, from about 183 to 85 million years ago, an interval associated with continental breakup and widespread large igneous province volcanism. One hypothesis suggests that anoxic events resulted from enhanced chemical weathering of Earth’s surface in a greenhouse world shaped by high volcanic carbon outgassing. Here we test this hypothesis using a combination of plate reconstructions, tectonic–geochemical analysis and global biogeochemical modelling. We show that enhanced weathering of mafic lithologies during continental breakup and nascent seafloor spreading can plausibly drive a succession of anoxic events. Weathering pulses collectively gave rise to substantial releases of the nutrient phosphorus to the oceans, stimulating biological primary production. This, in turn, enhanced organic carbon burial and caused widespread ocean deoxygenation on a scale sufficient to drive recurrent anoxia. This model complements volcanic outgassing-centred hypotheses for triggering these events by demonstrating well-quantified basaltic sources of phosphorus release during periods of intense weathering related to climate warmth. Our study highlights a close coupling between the solid Earth and biosphere during continental reorganization. Enhanced chemical weathering following continental breakup may have driven a succession of Mesozoic oceanic anoxic events, according to tectonic and biogeochemical modelling.","PeriodicalId":19053,"journal":{"name":"Nature Geoscience","volume":"17 9","pages":"926-935"},"PeriodicalIF":15.7000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41561-024-01496-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Solid Earth forcing of Mesozoic oceanic anoxic events\",\"authors\":\"T. M. Gernon, B. J. W. Mills, T. K. Hincks, A. S. Merdith, L. J. Alcott, E. J. Rohling, M. R. Palmer\",\"doi\":\"10.1038/s41561-024-01496-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Oceanic anoxic events are geologically abrupt phases of extreme oxygen depletion in the oceans that disrupted marine ecosystems and brought about evolutionary turnover. Typically lasting ~1.5 million years, these events occurred frequently during the Mesozoic era, from about 183 to 85 million years ago, an interval associated with continental breakup and widespread large igneous province volcanism. One hypothesis suggests that anoxic events resulted from enhanced chemical weathering of Earth’s surface in a greenhouse world shaped by high volcanic carbon outgassing. Here we test this hypothesis using a combination of plate reconstructions, tectonic–geochemical analysis and global biogeochemical modelling. We show that enhanced weathering of mafic lithologies during continental breakup and nascent seafloor spreading can plausibly drive a succession of anoxic events. Weathering pulses collectively gave rise to substantial releases of the nutrient phosphorus to the oceans, stimulating biological primary production. This, in turn, enhanced organic carbon burial and caused widespread ocean deoxygenation on a scale sufficient to drive recurrent anoxia. This model complements volcanic outgassing-centred hypotheses for triggering these events by demonstrating well-quantified basaltic sources of phosphorus release during periods of intense weathering related to climate warmth. Our study highlights a close coupling between the solid Earth and biosphere during continental reorganization. Enhanced chemical weathering following continental breakup may have driven a succession of Mesozoic oceanic anoxic events, according to tectonic and biogeochemical modelling.\",\"PeriodicalId\":19053,\"journal\":{\"name\":\"Nature Geoscience\",\"volume\":\"17 9\",\"pages\":\"926-935\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41561-024-01496-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Geoscience\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.nature.com/articles/s41561-024-01496-0\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Geoscience","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41561-024-01496-0","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Solid Earth forcing of Mesozoic oceanic anoxic events
Oceanic anoxic events are geologically abrupt phases of extreme oxygen depletion in the oceans that disrupted marine ecosystems and brought about evolutionary turnover. Typically lasting ~1.5 million years, these events occurred frequently during the Mesozoic era, from about 183 to 85 million years ago, an interval associated with continental breakup and widespread large igneous province volcanism. One hypothesis suggests that anoxic events resulted from enhanced chemical weathering of Earth’s surface in a greenhouse world shaped by high volcanic carbon outgassing. Here we test this hypothesis using a combination of plate reconstructions, tectonic–geochemical analysis and global biogeochemical modelling. We show that enhanced weathering of mafic lithologies during continental breakup and nascent seafloor spreading can plausibly drive a succession of anoxic events. Weathering pulses collectively gave rise to substantial releases of the nutrient phosphorus to the oceans, stimulating biological primary production. This, in turn, enhanced organic carbon burial and caused widespread ocean deoxygenation on a scale sufficient to drive recurrent anoxia. This model complements volcanic outgassing-centred hypotheses for triggering these events by demonstrating well-quantified basaltic sources of phosphorus release during periods of intense weathering related to climate warmth. Our study highlights a close coupling between the solid Earth and biosphere during continental reorganization. Enhanced chemical weathering following continental breakup may have driven a succession of Mesozoic oceanic anoxic events, according to tectonic and biogeochemical modelling.
期刊介绍:
Nature Geoscience is a monthly interdisciplinary journal that gathers top-tier research spanning Earth Sciences and related fields.
The journal covers all geoscience disciplines, including fieldwork, modeling, and theoretical studies.
Topics include atmospheric science, biogeochemistry, climate science, geobiology, geochemistry, geoinformatics, remote sensing, geology, geomagnetism, paleomagnetism, geomorphology, geophysics, glaciology, hydrology, limnology, mineralogy, oceanography, paleontology, paleoclimatology, paleoceanography, petrology, planetary science, seismology, space physics, tectonics, and volcanology.
Nature Geoscience upholds its commitment to publishing significant, high-quality Earth Sciences research through fair, rapid, and rigorous peer review, overseen by a team of full-time professional editors.