通过高通量实验和人工智能开发新的氧进化反应电催化剂

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL npj Computational Materials Pub Date : 2024-08-28 DOI:10.1038/s41524-024-01386-4
Shaomeng Xu, Zhuyang Chen, Mingyang Qin, Bijun Cai, Weixuan Li, Ronggui Zhu, Chen Xu, X.-D. Xiang
{"title":"通过高通量实验和人工智能开发新的氧进化反应电催化剂","authors":"Shaomeng Xu, Zhuyang Chen, Mingyang Qin, Bijun Cai, Weixuan Li, Ronggui Zhu, Chen Xu, X.-D. Xiang","doi":"10.1038/s41524-024-01386-4","DOIUrl":null,"url":null,"abstract":"<p>The development of non-noble metal electrocatalysts for the Oxygen Evolution Reaction (OER) is advancing towards the use of multi-element materials. To reveal the complex correlations of multi-element OER electrocatalysts, we developed an iterative workflow combining high-throughput experiments and AI-generated content (AIGC) processes. An increased number of 909 (compared to 145 in previous literature) universal descriptors for inorganic materials science were constructed and used as Artificial Neural Network (ANN) input. A large number of statistical ensembles with each ANN individual ensemble having a reduced number of descriptors were integrated with a new Hierarchical Neural Network (HNN) algorithm. This algorithm addresses the longstanding challenge of balancing overwhelming descriptor numbers with insufficient datasets in traditional ANN approaches to materials science problems. As a result, the combination of AIGC and experimental validation significantly enhanced prediction accuracy, increase the R<sup>2</sup> values from 0.7 to 0.98 for Tafel slopes.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"37 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developing new electrocatalysts for oxygen evolution reaction via high throughput experiments and artificial intelligence\",\"authors\":\"Shaomeng Xu, Zhuyang Chen, Mingyang Qin, Bijun Cai, Weixuan Li, Ronggui Zhu, Chen Xu, X.-D. Xiang\",\"doi\":\"10.1038/s41524-024-01386-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The development of non-noble metal electrocatalysts for the Oxygen Evolution Reaction (OER) is advancing towards the use of multi-element materials. To reveal the complex correlations of multi-element OER electrocatalysts, we developed an iterative workflow combining high-throughput experiments and AI-generated content (AIGC) processes. An increased number of 909 (compared to 145 in previous literature) universal descriptors for inorganic materials science were constructed and used as Artificial Neural Network (ANN) input. A large number of statistical ensembles with each ANN individual ensemble having a reduced number of descriptors were integrated with a new Hierarchical Neural Network (HNN) algorithm. This algorithm addresses the longstanding challenge of balancing overwhelming descriptor numbers with insufficient datasets in traditional ANN approaches to materials science problems. As a result, the combination of AIGC and experimental validation significantly enhanced prediction accuracy, increase the R<sup>2</sup> values from 0.7 to 0.98 for Tafel slopes.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-024-01386-4\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01386-4","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

氧进化反应(OER)非贵金属电催化剂的开发正朝着使用多元素材料的方向发展。为了揭示多元素氧还原反应电催化剂的复杂相关性,我们开发了一种结合高通量实验和人工智能生成内容(AIGC)过程的迭代工作流程。我们构建了数量更多的 909 个无机材料科学通用描述符(之前文献中为 145 个),并将其用作人工神经网络(ANN)输入。大量的统计集合与新的分层神经网络(HNN)算法进行了整合,每个 ANN 单个集合的描述符数量都有所减少。该算法解决了长期存在的难题,即在解决材料科学问题的传统 ANN 方法中,如何在描述符数量过多与数据集不足之间取得平衡。因此,AIGC 与实验验证的结合大大提高了预测准确性,将 Tafel 斜坡的 R2 值从 0.7 提高到 0.98。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Developing new electrocatalysts for oxygen evolution reaction via high throughput experiments and artificial intelligence

The development of non-noble metal electrocatalysts for the Oxygen Evolution Reaction (OER) is advancing towards the use of multi-element materials. To reveal the complex correlations of multi-element OER electrocatalysts, we developed an iterative workflow combining high-throughput experiments and AI-generated content (AIGC) processes. An increased number of 909 (compared to 145 in previous literature) universal descriptors for inorganic materials science were constructed and used as Artificial Neural Network (ANN) input. A large number of statistical ensembles with each ANN individual ensemble having a reduced number of descriptors were integrated with a new Hierarchical Neural Network (HNN) algorithm. This algorithm addresses the longstanding challenge of balancing overwhelming descriptor numbers with insufficient datasets in traditional ANN approaches to materials science problems. As a result, the combination of AIGC and experimental validation significantly enhanced prediction accuracy, increase the R2 values from 0.7 to 0.98 for Tafel slopes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
期刊最新文献
Thermodynamics of solids including anharmonicity through quasiparticle theory Neural network potential for dislocation plasticity in ceramics Exhaustive search for novel multicomponent alloys with brute force and machine learning A Ring2Vec description method enables accurate predictions of molecular properties in organic solar cells Dielectric tensor prediction for inorganic materials using latent information from preferred potential
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1