通过事件触发状态反馈实现非线性异构 MAS 的基于 RL 的自适应最优两方共识控制

IF 5.2 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Circuits and Systems I: Regular Papers Pub Date : 2024-08-12 DOI:10.1109/TCSI.2024.3426982
Yuhao Zhou;Biao Luo;Xin Wang;Xiaodong Xu;Lin Xiao
{"title":"通过事件触发状态反馈实现非线性异构 MAS 的基于 RL 的自适应最优两方共识控制","authors":"Yuhao Zhou;Biao Luo;Xin Wang;Xiaodong Xu;Lin Xiao","doi":"10.1109/TCSI.2024.3426982","DOIUrl":null,"url":null,"abstract":"This article investigates a leader-following bipartite consensus issue for uncertain nonlinear heterogeneous multiagent systems (MASs). Initially, within the framework of optimal control theory, we employ the reinforcement learning (RL) algorithm to derive an approximate solution to the Hamilton-Jacobi-Bellman equation (HJBE). Specifically, the neural networks (NNs) are utilized to construct the Actor-Critic structure with the aim of implementing control behavior and evaluating system performance, respectively. An additional network is employed to address nonlinear uncertainties existing in the system. Furthermore, we design a static threshold event-triggered mechanism (ETM) to achieve the event-triggered state feedback-based control strategy. By utilizing this event-triggered state information, we reconstruct the approximate optimal controller and update laws of neural network weights, effectively reducing the communication burden while ensuring that all signals of the MASs remain bounded. Finally, two simulation examples are carried out to demonstrate the feasibility of the proposed method.","PeriodicalId":13039,"journal":{"name":"IEEE Transactions on Circuits and Systems I: Regular Papers","volume":"71 9","pages":"4261-4273"},"PeriodicalIF":5.2000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RL-Based Adaptive Optimal Bipartite Consensus Control for Nonlinear Heterogeneous MASs via Event-Triggered State Feedback\",\"authors\":\"Yuhao Zhou;Biao Luo;Xin Wang;Xiaodong Xu;Lin Xiao\",\"doi\":\"10.1109/TCSI.2024.3426982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article investigates a leader-following bipartite consensus issue for uncertain nonlinear heterogeneous multiagent systems (MASs). Initially, within the framework of optimal control theory, we employ the reinforcement learning (RL) algorithm to derive an approximate solution to the Hamilton-Jacobi-Bellman equation (HJBE). Specifically, the neural networks (NNs) are utilized to construct the Actor-Critic structure with the aim of implementing control behavior and evaluating system performance, respectively. An additional network is employed to address nonlinear uncertainties existing in the system. Furthermore, we design a static threshold event-triggered mechanism (ETM) to achieve the event-triggered state feedback-based control strategy. By utilizing this event-triggered state information, we reconstruct the approximate optimal controller and update laws of neural network weights, effectively reducing the communication burden while ensuring that all signals of the MASs remain bounded. Finally, two simulation examples are carried out to demonstrate the feasibility of the proposed method.\",\"PeriodicalId\":13039,\"journal\":{\"name\":\"IEEE Transactions on Circuits and Systems I: Regular Papers\",\"volume\":\"71 9\",\"pages\":\"4261-4273\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Circuits and Systems I: Regular Papers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10633792/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems I: Regular Papers","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10633792/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了不确定的非线性异构多代理系统(MAS)的领导者-跟随者两方共识问题。首先,在最优控制理论的框架内,我们采用强化学习(RL)算法推导出汉密尔顿-雅各比-贝尔曼方程(HJBE)的近似解。具体来说,我们利用神经网络(NN)来构建 "行动者-批判者 "结构,目的分别是实施控制行为和评估系统性能。我们还采用了一个额外的网络来解决系统中存在的非线性不确定性。此外,我们还设计了一种静态阈值事件触发机制(ETM),以实现基于事件触发状态反馈的控制策略。通过利用这些事件触发状态信息,我们重建了近似最优控制器和神经网络权重更新规律,在确保 MAS 所有信号保持有界的同时,有效减轻了通信负担。最后,我们通过两个仿真实例证明了所提方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RL-Based Adaptive Optimal Bipartite Consensus Control for Nonlinear Heterogeneous MASs via Event-Triggered State Feedback
This article investigates a leader-following bipartite consensus issue for uncertain nonlinear heterogeneous multiagent systems (MASs). Initially, within the framework of optimal control theory, we employ the reinforcement learning (RL) algorithm to derive an approximate solution to the Hamilton-Jacobi-Bellman equation (HJBE). Specifically, the neural networks (NNs) are utilized to construct the Actor-Critic structure with the aim of implementing control behavior and evaluating system performance, respectively. An additional network is employed to address nonlinear uncertainties existing in the system. Furthermore, we design a static threshold event-triggered mechanism (ETM) to achieve the event-triggered state feedback-based control strategy. By utilizing this event-triggered state information, we reconstruct the approximate optimal controller and update laws of neural network weights, effectively reducing the communication burden while ensuring that all signals of the MASs remain bounded. Finally, two simulation examples are carried out to demonstrate the feasibility of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Circuits and Systems I: Regular Papers
IEEE Transactions on Circuits and Systems I: Regular Papers 工程技术-工程:电子与电气
CiteScore
9.80
自引率
11.80%
发文量
441
审稿时长
2 months
期刊介绍: TCAS I publishes regular papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes: - Circuits: Analog, Digital and Mixed Signal Circuits and Systems - Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic - Circuits and Systems, Power Electronics and Systems - Software for Analog-and-Logic Circuits and Systems - Control aspects of Circuits and Systems.
期刊最新文献
Table of Contents IEEE Circuits and Systems Society Information TechRxiv: Share Your Preprint Research with the World! IEEE Transactions on Circuits and Systems--I: Regular Papers Information for Authors Guest Editorial Special Issue on the International Symposium on Integrated Circuits and Systems—ISICAS 2024
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1