Tianxiang Wu;Xi Wang;Liqi Zhu;Xun Li;Jian Huang;Zhikai Gan;Yanfeng Wei;Chun Lin
{"title":"探测多层异质结 HgCdTe 长波和甚长波红外光二极管的暗电流","authors":"Tianxiang Wu;Xi Wang;Liqi Zhu;Xun Li;Jian Huang;Zhikai Gan;Yanfeng Wei;Chun Lin","doi":"10.1109/JQE.2024.3445293","DOIUrl":null,"url":null,"abstract":"This paper characterizes the dark current development of p-on-n type HgCdTe multi-layer heterojunction long wavelength infrared (LWIR) and very long wavelength infrared (VLWIR) photodiodes. Four devices that operate at different wavelengths are fabricated by employing a multi-layer structure. The results demonstrate the favorable dark current which is close to the “Rule 07” limitation is obtained with a 50% cutoff wavelength of \n<inline-formula> <tex-math>$16.6~\\mu $ </tex-math></inline-formula>\nm. Besides, the influence mechanisms on the device are extracted by analyzing the temperature-dependent dark current from 40 K to 130 K. The results suggest that the proposed devices perform comparable to those of conventional double-layer heterojunction devices. Furthermore, it can be noted that by precisely controlling the composition distribution and depletion region positions as well as improving the process, we can further achieve superior LWIR and VLWIR devices.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 5","pages":"1-6"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probing the Dark Current of Multi-Layer Heterojunction HgCdTe Long-Wavelength and Very-Long-Wavelength Infrared Photodiodes\",\"authors\":\"Tianxiang Wu;Xi Wang;Liqi Zhu;Xun Li;Jian Huang;Zhikai Gan;Yanfeng Wei;Chun Lin\",\"doi\":\"10.1109/JQE.2024.3445293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper characterizes the dark current development of p-on-n type HgCdTe multi-layer heterojunction long wavelength infrared (LWIR) and very long wavelength infrared (VLWIR) photodiodes. Four devices that operate at different wavelengths are fabricated by employing a multi-layer structure. The results demonstrate the favorable dark current which is close to the “Rule 07” limitation is obtained with a 50% cutoff wavelength of \\n<inline-formula> <tex-math>$16.6~\\\\mu $ </tex-math></inline-formula>\\nm. Besides, the influence mechanisms on the device are extracted by analyzing the temperature-dependent dark current from 40 K to 130 K. The results suggest that the proposed devices perform comparable to those of conventional double-layer heterojunction devices. Furthermore, it can be noted that by precisely controlling the composition distribution and depletion region positions as well as improving the process, we can further achieve superior LWIR and VLWIR devices.\",\"PeriodicalId\":13200,\"journal\":{\"name\":\"IEEE Journal of Quantum Electronics\",\"volume\":\"60 5\",\"pages\":\"1-6\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Quantum Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10638093/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10638093/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
本文描述了 p-on-n 型 HgCdTe 多层异质结长波长红外(LWIR)和超长波长红外(VLWIR)光电二极管的暗电流发展情况。通过采用多层结构,制造出了四个工作于不同波长的器件。此外,通过分析从 40 K 到 130 K 与温度相关的暗电流,提取了器件的影响机制。此外,我们还注意到,通过精确控制成分分布和耗尽区位置以及改进工艺,我们可以进一步实现卓越的 LWIR 和 VLWIR 器件。
Probing the Dark Current of Multi-Layer Heterojunction HgCdTe Long-Wavelength and Very-Long-Wavelength Infrared Photodiodes
This paper characterizes the dark current development of p-on-n type HgCdTe multi-layer heterojunction long wavelength infrared (LWIR) and very long wavelength infrared (VLWIR) photodiodes. Four devices that operate at different wavelengths are fabricated by employing a multi-layer structure. The results demonstrate the favorable dark current which is close to the “Rule 07” limitation is obtained with a 50% cutoff wavelength of
$16.6~\mu $
m. Besides, the influence mechanisms on the device are extracted by analyzing the temperature-dependent dark current from 40 K to 130 K. The results suggest that the proposed devices perform comparable to those of conventional double-layer heterojunction devices. Furthermore, it can be noted that by precisely controlling the composition distribution and depletion region positions as well as improving the process, we can further achieve superior LWIR and VLWIR devices.
期刊介绍:
The IEEE Journal of Quantum Electronics is dedicated to the publication of manuscripts reporting novel experimental or theoretical results in the broad field of the science and technology of quantum electronics. The Journal comprises original contributions, both regular papers and letters, describing significant advances in the understanding of quantum electronics phenomena or the demonstration of new devices, systems, or applications. Manuscripts reporting new developments in systems and applications must emphasize quantum electronics principles or devices. The scope of JQE encompasses the generation, propagation, detection, and application of coherent electromagnetic radiation having wavelengths below one millimeter (i.e., in the submillimeter, infrared, visible, ultraviolet, etc., regions). Whether the focus of a manuscript is a quantum-electronic device or phenomenon, the critical factor in the editorial review of a manuscript is the potential impact of the results presented on continuing research in the field or on advancing the technological base of quantum electronics.