基于光子晶体纳米光束腔的超低功耗硅电光开关

Hua Zhong, Jingchi Li, Yu He, Ruihuan Zhang, Hongwei Wang, Jian Shen, Yong Zhang, Yikai Su
{"title":"基于光子晶体纳米光束腔的超低功耗硅电光开关","authors":"Hua Zhong, Jingchi Li, Yu He, Ruihuan Zhang, Hongwei Wang, Jian Shen, Yong Zhang, Yikai Su","doi":"10.1038/s44310-024-00032-7","DOIUrl":null,"url":null,"abstract":"Ultra-low-power consumption and high-speed integrated switches are highly desirable for future data centers and high-performance optical computers. In this study, we proposed an ultra-low-power consumption silicon electro-optic switch based on photonic crystal nanobeam cavities on a foundry platform. The proposed switch showed an ultra-low static-tuning power of 0.10 mW and a calculated dynamic switching power of 6.34 fJ/bit, with a compact footprint of 18 μm × 200 μm. Additionally, a 136-Gb/s four-level pulse amplitude modulation signal transmission experiment was carried out to verify the capability of the proposed electro-optic switch to support high-speed data transmission. The proposed device has the lowest static-tuning power consumption among silicon electro-optic switches and the highest data transmission rate. The results demonstrate the potential applications of this switch in high-performance optical computers, data center interconnects, optical neural networks, and programmable photonic circuits.","PeriodicalId":501711,"journal":{"name":"npj Nanophotonics","volume":" ","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44310-024-00032-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Ultra-low-power consumption silicon electro-optic switch based on photonic crystal nanobeam cavity\",\"authors\":\"Hua Zhong, Jingchi Li, Yu He, Ruihuan Zhang, Hongwei Wang, Jian Shen, Yong Zhang, Yikai Su\",\"doi\":\"10.1038/s44310-024-00032-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultra-low-power consumption and high-speed integrated switches are highly desirable for future data centers and high-performance optical computers. In this study, we proposed an ultra-low-power consumption silicon electro-optic switch based on photonic crystal nanobeam cavities on a foundry platform. The proposed switch showed an ultra-low static-tuning power of 0.10 mW and a calculated dynamic switching power of 6.34 fJ/bit, with a compact footprint of 18 μm × 200 μm. Additionally, a 136-Gb/s four-level pulse amplitude modulation signal transmission experiment was carried out to verify the capability of the proposed electro-optic switch to support high-speed data transmission. The proposed device has the lowest static-tuning power consumption among silicon electro-optic switches and the highest data transmission rate. The results demonstrate the potential applications of this switch in high-performance optical computers, data center interconnects, optical neural networks, and programmable photonic circuits.\",\"PeriodicalId\":501711,\"journal\":{\"name\":\"npj Nanophotonics\",\"volume\":\" \",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s44310-024-00032-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Nanophotonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44310-024-00032-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Nanophotonics","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44310-024-00032-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

超低功耗和高速集成开关是未来数据中心和高性能光计算机的理想之选。在这项研究中,我们在代工平台上提出了一种基于光子晶体纳米束腔的超低功耗硅电光开关。该开关的静态调谐功率为 0.10 mW,动态开关功率为 6.34 fJ/bit,体积仅为 18 μm × 200 μm。此外,还进行了 136 Gb/s 的四级脉冲幅度调制信号传输实验,以验证所提出的光电开关支持高速数据传输的能力。在硅电光开关中,该器件的静态调谐功耗最低,数据传输速率最高。研究结果证明了这种开关在高性能光计算机、数据中心互连、光神经网络和可编程光子电路中的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ultra-low-power consumption silicon electro-optic switch based on photonic crystal nanobeam cavity
Ultra-low-power consumption and high-speed integrated switches are highly desirable for future data centers and high-performance optical computers. In this study, we proposed an ultra-low-power consumption silicon electro-optic switch based on photonic crystal nanobeam cavities on a foundry platform. The proposed switch showed an ultra-low static-tuning power of 0.10 mW and a calculated dynamic switching power of 6.34 fJ/bit, with a compact footprint of 18 μm × 200 μm. Additionally, a 136-Gb/s four-level pulse amplitude modulation signal transmission experiment was carried out to verify the capability of the proposed electro-optic switch to support high-speed data transmission. The proposed device has the lowest static-tuning power consumption among silicon electro-optic switches and the highest data transmission rate. The results demonstrate the potential applications of this switch in high-performance optical computers, data center interconnects, optical neural networks, and programmable photonic circuits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
AlGaN/AlN heterostructures: an emerging platform for integrated photonics. Broadband cavity-enhanced Kerr Comb spectroscopy on Chip Perspectives of chiral nanophotonics: from mechanisms to biomedical applications Teleportation of a genuine single-rail vacuum-one-photon qubit generated via a quantum dot source Non-Hermitian selective thermal emitter for thermophotovoltaics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1