Stefano Brighenti, Nicola Colombo, Thomas Wagner, Michael Pettauer, Nicolas Guyennon, Karl Krainer, Monica Tolotti, Michela Rogora, Luca Paro, Sandra M Steingruber, Chantal Del Siro, Cristian Scapozza, Noelia R Sileo, Cristian D Villarroel, Masaki Hayashi, Jeffrey Munroe, Dario Trombotto Liaudat, Leonardo Cerasino, Werner Tirler, Francesco Comiti, Michele Freppaz, Franco Salerno, M Iggy Litaor, Edoardo Cremonese, Umberto Morra di Cella, Gerfried Winkler
{"title":"控制欧洲和美洲山脉岩石冰川泉水水质的因素。","authors":"Stefano Brighenti, Nicola Colombo, Thomas Wagner, Michael Pettauer, Nicolas Guyennon, Karl Krainer, Monica Tolotti, Michela Rogora, Luca Paro, Sandra M Steingruber, Chantal Del Siro, Cristian Scapozza, Noelia R Sileo, Cristian D Villarroel, Masaki Hayashi, Jeffrey Munroe, Dario Trombotto Liaudat, Leonardo Cerasino, Werner Tirler, Francesco Comiti, Michele Freppaz, Franco Salerno, M Iggy Litaor, Edoardo Cremonese, Umberto Morra di Cella, Gerfried Winkler","doi":"10.1016/j.scitotenv.2024.175706","DOIUrl":null,"url":null,"abstract":"<p><p>Rock glaciers (RGs) provide significant water resources in mountain areas under climate change. Recent research has highlighted high concentrations of solutes including trace elements in RG-fed waters, with negative implications on water quality. Yet, sparse studies from a few locations hinder conclusions about the main drivers of solute export from RGs. Here, in an unprecedented effort, we collected published and unpublished data on rock glacier hydrochemistry around the globe. We considered 201 RG springs from mountain ranges across Europe, North and South America, using a combination of machine learning, multivariate and univariate analyses, and geochemical modeling. We found that 35 % of springs issuing from intact RGs (containing internal ice) have water quality below drinking water standards, compared to 5 % of springs connected to relict RGs (without internal ice). The interaction of ice and bedrock lithology is responsible for solute concentrations in RG springs. Indeed, we found higher concentrations of sulfate and trace elements in springs sourcing from intact RGs compared to water originating from relict RGs, mostly in specific lithological settings. Enhanced sulfide oxidation in intact RGs is responsible for the elevated trace element concentrations. Challenges for water management may arise in mountain catchments rich in intact RGs, and where the predisposing geology would make these areas geochemical RG hotspots. Our work represents a first comprehensive attempt to identify the main drivers of solute concentrations in RG waters.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":" ","pages":"175706"},"PeriodicalIF":8.2000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Factors controlling the water quality of rock glacier springs in European and American mountain ranges.\",\"authors\":\"Stefano Brighenti, Nicola Colombo, Thomas Wagner, Michael Pettauer, Nicolas Guyennon, Karl Krainer, Monica Tolotti, Michela Rogora, Luca Paro, Sandra M Steingruber, Chantal Del Siro, Cristian Scapozza, Noelia R Sileo, Cristian D Villarroel, Masaki Hayashi, Jeffrey Munroe, Dario Trombotto Liaudat, Leonardo Cerasino, Werner Tirler, Francesco Comiti, Michele Freppaz, Franco Salerno, M Iggy Litaor, Edoardo Cremonese, Umberto Morra di Cella, Gerfried Winkler\",\"doi\":\"10.1016/j.scitotenv.2024.175706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rock glaciers (RGs) provide significant water resources in mountain areas under climate change. Recent research has highlighted high concentrations of solutes including trace elements in RG-fed waters, with negative implications on water quality. Yet, sparse studies from a few locations hinder conclusions about the main drivers of solute export from RGs. Here, in an unprecedented effort, we collected published and unpublished data on rock glacier hydrochemistry around the globe. We considered 201 RG springs from mountain ranges across Europe, North and South America, using a combination of machine learning, multivariate and univariate analyses, and geochemical modeling. We found that 35 % of springs issuing from intact RGs (containing internal ice) have water quality below drinking water standards, compared to 5 % of springs connected to relict RGs (without internal ice). The interaction of ice and bedrock lithology is responsible for solute concentrations in RG springs. Indeed, we found higher concentrations of sulfate and trace elements in springs sourcing from intact RGs compared to water originating from relict RGs, mostly in specific lithological settings. Enhanced sulfide oxidation in intact RGs is responsible for the elevated trace element concentrations. Challenges for water management may arise in mountain catchments rich in intact RGs, and where the predisposing geology would make these areas geochemical RG hotspots. Our work represents a first comprehensive attempt to identify the main drivers of solute concentrations in RG waters.</p>\",\"PeriodicalId\":422,\"journal\":{\"name\":\"Science of the Total Environment\",\"volume\":\" \",\"pages\":\"175706\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of the Total Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.scitotenv.2024.175706\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.175706","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Factors controlling the water quality of rock glacier springs in European and American mountain ranges.
Rock glaciers (RGs) provide significant water resources in mountain areas under climate change. Recent research has highlighted high concentrations of solutes including trace elements in RG-fed waters, with negative implications on water quality. Yet, sparse studies from a few locations hinder conclusions about the main drivers of solute export from RGs. Here, in an unprecedented effort, we collected published and unpublished data on rock glacier hydrochemistry around the globe. We considered 201 RG springs from mountain ranges across Europe, North and South America, using a combination of machine learning, multivariate and univariate analyses, and geochemical modeling. We found that 35 % of springs issuing from intact RGs (containing internal ice) have water quality below drinking water standards, compared to 5 % of springs connected to relict RGs (without internal ice). The interaction of ice and bedrock lithology is responsible for solute concentrations in RG springs. Indeed, we found higher concentrations of sulfate and trace elements in springs sourcing from intact RGs compared to water originating from relict RGs, mostly in specific lithological settings. Enhanced sulfide oxidation in intact RGs is responsible for the elevated trace element concentrations. Challenges for water management may arise in mountain catchments rich in intact RGs, and where the predisposing geology would make these areas geochemical RG hotspots. Our work represents a first comprehensive attempt to identify the main drivers of solute concentrations in RG waters.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.