{"title":"使用非水溶剂开发稳定的冻干一水环磷酰胺制剂","authors":"Shaik Riyaz Ahammad, Damodharan Narayanasamy","doi":"10.1208/s12249-024-02920-9","DOIUrl":null,"url":null,"abstract":"<div><p>To ensure product stability, it is critical to maintain the monohydrate state of cyclophosphamide following lyophilization, as this is the most stable solid form of the Cyclophosphamide. On the other hand, because of their limited aqueous solubility and stability, non-aqueous solvents are preferred for determining the composition and stability of bulk solutions. Hence, the purpose of this study was to use non-aqueous solvents for determining the composition and stability of bulk solutions, and to shorten the lyophilization process by retaining the cyclophosphamide monohydrate. Furthermore, prior to selecting the solvent for the bulk solution consisting of 90:10 tertiary butyl alcohol (TBA) and acetonitrile (ACN), various factors were taken into account, including the freezing point, vapor pressure of solvents, solubility, and stability of cyclophosphamide monohydrate. The concentration of the bulk solution was adjusted to 200 mg/mL in order to optimize the fill volume, enhance sublimation rates at lower temperatures during primary drying, and eliminate the need for secondary drying. The differential scanning calorimetry (DSC) measurements of bulk solution were used to improve the lyophilization cycle. The lyophilization cycle opted was freezing at a temperature of -55 °C with annealing step at -22 °C by which the reconstitution time was significantly reduced. The drying was performed at below − 25 °C while maintaining a chamber pressure of 300 mTorr. The complete removal of non-aqueous solvents was achieved by retaining water within the system. The presence of cyclophosphamide monohydrate was confirmed using X-ray diffraction (XRD). The reduction of lyophilization process time was established by conducting mass transfer tests and evaluating the physicochemical properties of the pharmaceutical product. Using non-aqueous solvents for freeze-drying cyclophosphamide is a viable option, and this study provides significant knowledge for the advancement of future generic pharmaceuticals.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"25 7","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a Stable Lyophilized Cyclophosphamide Monohydrate Formulation Using Non-Aqueous Solvents\",\"authors\":\"Shaik Riyaz Ahammad, Damodharan Narayanasamy\",\"doi\":\"10.1208/s12249-024-02920-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To ensure product stability, it is critical to maintain the monohydrate state of cyclophosphamide following lyophilization, as this is the most stable solid form of the Cyclophosphamide. On the other hand, because of their limited aqueous solubility and stability, non-aqueous solvents are preferred for determining the composition and stability of bulk solutions. Hence, the purpose of this study was to use non-aqueous solvents for determining the composition and stability of bulk solutions, and to shorten the lyophilization process by retaining the cyclophosphamide monohydrate. Furthermore, prior to selecting the solvent for the bulk solution consisting of 90:10 tertiary butyl alcohol (TBA) and acetonitrile (ACN), various factors were taken into account, including the freezing point, vapor pressure of solvents, solubility, and stability of cyclophosphamide monohydrate. The concentration of the bulk solution was adjusted to 200 mg/mL in order to optimize the fill volume, enhance sublimation rates at lower temperatures during primary drying, and eliminate the need for secondary drying. The differential scanning calorimetry (DSC) measurements of bulk solution were used to improve the lyophilization cycle. The lyophilization cycle opted was freezing at a temperature of -55 °C with annealing step at -22 °C by which the reconstitution time was significantly reduced. The drying was performed at below − 25 °C while maintaining a chamber pressure of 300 mTorr. The complete removal of non-aqueous solvents was achieved by retaining water within the system. The presence of cyclophosphamide monohydrate was confirmed using X-ray diffraction (XRD). The reduction of lyophilization process time was established by conducting mass transfer tests and evaluating the physicochemical properties of the pharmaceutical product. Using non-aqueous solvents for freeze-drying cyclophosphamide is a viable option, and this study provides significant knowledge for the advancement of future generic pharmaceuticals.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":6925,\"journal\":{\"name\":\"AAPS PharmSciTech\",\"volume\":\"25 7\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AAPS PharmSciTech\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1208/s12249-024-02920-9\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS PharmSciTech","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1208/s12249-024-02920-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
摘要
为确保产品的稳定性,在冻干后保持环磷酰胺的一水合物状态至关重要,因为这是环磷酰胺最稳定的固体形式。另一方面,由于环磷酰胺的水溶性和稳定性有限,因此在确定散装溶液的成分和稳定性时,首选非水溶剂。因此,本研究的目的是使用非水溶剂来确定散装溶液的成分和稳定性,并通过保留环磷酰胺一水合物来缩短冻干过程。此外,在选择由 90:10 叔丁醇(TBA)和乙腈(ACN)组成的块状溶液的溶剂之前,考虑了各种因素,包括凝固点、溶剂的蒸汽压、溶解度和一水环磷酰胺的稳定性。散装溶液的浓度调整为 200 毫克/毫升,以优化填充体积,提高一次干燥过程中在较低温度下的升华率,并消除二次干燥的需要。利用散装溶液的差示扫描量热法(DSC)测量来改进冻干周期。所选择的冻干周期是在-55 °C的温度下冷冻,并在-22 °C的温度下退火,从而大大缩短了重组时间。干燥在低于 -25 °C 的温度下进行,同时保持室压为 300 mTorr。通过在系统中保留水,实现了非水溶剂的完全去除。通过 X 射线衍射 (XRD) 确认了环磷酰胺一水合物的存在。通过进行传质测试和评估药品的理化特性,确定了冻干过程时间的缩短。使用非水溶剂冷冻干燥环磷酰胺是一种可行的选择,这项研究为未来非专利药品的发展提供了重要的知识。
Development of a Stable Lyophilized Cyclophosphamide Monohydrate Formulation Using Non-Aqueous Solvents
To ensure product stability, it is critical to maintain the monohydrate state of cyclophosphamide following lyophilization, as this is the most stable solid form of the Cyclophosphamide. On the other hand, because of their limited aqueous solubility and stability, non-aqueous solvents are preferred for determining the composition and stability of bulk solutions. Hence, the purpose of this study was to use non-aqueous solvents for determining the composition and stability of bulk solutions, and to shorten the lyophilization process by retaining the cyclophosphamide monohydrate. Furthermore, prior to selecting the solvent for the bulk solution consisting of 90:10 tertiary butyl alcohol (TBA) and acetonitrile (ACN), various factors were taken into account, including the freezing point, vapor pressure of solvents, solubility, and stability of cyclophosphamide monohydrate. The concentration of the bulk solution was adjusted to 200 mg/mL in order to optimize the fill volume, enhance sublimation rates at lower temperatures during primary drying, and eliminate the need for secondary drying. The differential scanning calorimetry (DSC) measurements of bulk solution were used to improve the lyophilization cycle. The lyophilization cycle opted was freezing at a temperature of -55 °C with annealing step at -22 °C by which the reconstitution time was significantly reduced. The drying was performed at below − 25 °C while maintaining a chamber pressure of 300 mTorr. The complete removal of non-aqueous solvents was achieved by retaining water within the system. The presence of cyclophosphamide monohydrate was confirmed using X-ray diffraction (XRD). The reduction of lyophilization process time was established by conducting mass transfer tests and evaluating the physicochemical properties of the pharmaceutical product. Using non-aqueous solvents for freeze-drying cyclophosphamide is a viable option, and this study provides significant knowledge for the advancement of future generic pharmaceuticals.
期刊介绍:
AAPS PharmSciTech is a peer-reviewed, online-only journal committed to serving those pharmaceutical scientists and engineers interested in the research, development, and evaluation of pharmaceutical dosage forms and delivery systems, including drugs derived from biotechnology and the manufacturing science pertaining to the commercialization of such dosage forms. Because of its electronic nature, AAPS PharmSciTech aspires to utilize evolving electronic technology to enable faster and diverse mechanisms of information delivery to its readership. Submission of uninvited expert reviews and research articles are welcomed.