利用深度学习筛查早产儿视网膜病变严重程度的可解释系统。

IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL Bioengineering Pub Date : 2024-08-05 DOI:10.3390/bioengineering11080792
Wenhan Yang, Hao Zhou, Yun Zhang, Limei Sun, Li Huang, Songshan Li, Xiaoling Luo, Yili Jin, Wei Sun, Wenjia Yan, Jing Li, Jianxiang Deng, Zhi Xie, Yao He, Xiaoyan Ding
{"title":"利用深度学习筛查早产儿视网膜病变严重程度的可解释系统。","authors":"Wenhan Yang, Hao Zhou, Yun Zhang, Limei Sun, Li Huang, Songshan Li, Xiaoling Luo, Yili Jin, Wei Sun, Wenjia Yan, Jing Li, Jianxiang Deng, Zhi Xie, Yao He, Xiaoyan Ding","doi":"10.3390/bioengineering11080792","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate evaluation of retinopathy of prematurity (ROP) severity is vital for screening and proper treatment. Current deep-learning-based automated AI systems for assessing ROP severity do not follow clinical guidelines and are opaque. The aim of this study is to develop an interpretable AI system by mimicking the clinical screening process to determine ROP severity level. A total of 6100 RetCam Ⅲ wide-field digital retinal images were collected from Guangdong Women and Children Hospital at Panyu (PY) and Zhongshan Ophthalmic Center (ZOC). A total of 3330 images of 520 pediatric patients from PY were annotated to train an object detection model to detect lesion type and location. A total of 2770 images of 81 pediatric patients from ZOC were annotated for stage, zone, and the presence of plus disease. Integrating stage, zone, and the presence of plus disease according to clinical guidelines yields ROP severity such that an interpretable AI system was developed to provide the stage from the lesion type, the zone from the lesion location, and the presence of plus disease from a plus disease classification model. The ROP severity was calculated accordingly and compared with the assessment of a human expert. Our method achieved an area under the curve (AUC) of 0.95 (95% confidence interval [CI] 0.90-0.98) in assessing the severity level of ROP. Compared with clinical doctors, our method achieved the highest F1 score value of 0.76 in assessing the severity level of ROP. In conclusion, we developed an interpretable AI system for assessing the severity level of ROP that shows significant potential for use in clinical practice for ROP severity level screening.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11351924/pdf/","citationCount":"0","resultStr":"{\"title\":\"An Interpretable System for Screening the Severity Level of Retinopathy in Premature Infants Using Deep Learning.\",\"authors\":\"Wenhan Yang, Hao Zhou, Yun Zhang, Limei Sun, Li Huang, Songshan Li, Xiaoling Luo, Yili Jin, Wei Sun, Wenjia Yan, Jing Li, Jianxiang Deng, Zhi Xie, Yao He, Xiaoyan Ding\",\"doi\":\"10.3390/bioengineering11080792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate evaluation of retinopathy of prematurity (ROP) severity is vital for screening and proper treatment. Current deep-learning-based automated AI systems for assessing ROP severity do not follow clinical guidelines and are opaque. The aim of this study is to develop an interpretable AI system by mimicking the clinical screening process to determine ROP severity level. A total of 6100 RetCam Ⅲ wide-field digital retinal images were collected from Guangdong Women and Children Hospital at Panyu (PY) and Zhongshan Ophthalmic Center (ZOC). A total of 3330 images of 520 pediatric patients from PY were annotated to train an object detection model to detect lesion type and location. A total of 2770 images of 81 pediatric patients from ZOC were annotated for stage, zone, and the presence of plus disease. Integrating stage, zone, and the presence of plus disease according to clinical guidelines yields ROP severity such that an interpretable AI system was developed to provide the stage from the lesion type, the zone from the lesion location, and the presence of plus disease from a plus disease classification model. The ROP severity was calculated accordingly and compared with the assessment of a human expert. Our method achieved an area under the curve (AUC) of 0.95 (95% confidence interval [CI] 0.90-0.98) in assessing the severity level of ROP. Compared with clinical doctors, our method achieved the highest F1 score value of 0.76 in assessing the severity level of ROP. In conclusion, we developed an interpretable AI system for assessing the severity level of ROP that shows significant potential for use in clinical practice for ROP severity level screening.</p>\",\"PeriodicalId\":8874,\"journal\":{\"name\":\"Bioengineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11351924/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bioengineering11080792\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11080792","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

准确评估早产儿视网膜病变(ROP)的严重程度对于筛查和正确治疗至关重要。目前用于评估早产儿视网膜病变严重程度的基于深度学习的自动人工智能系统并不遵循临床指南,而且不透明。本研究旨在通过模仿临床筛查过程来确定 ROP 严重程度,从而开发出一种可解释的人工智能系统。本研究从广东省番禺妇女儿童医院和中山市眼科中心收集了 6100 张 RetCam Ⅲ 宽视场数字视网膜图像。对来自番禺妇幼保健院的 520 名儿科患者的 3330 张图像进行了标注,以训练对象检测模型来检测病变类型和位置。ZOC 共对 81 名儿科患者的 2770 张图像进行了分期、分区和是否存在加号疾病的标注。根据临床指南将分期、分区和是否存在加号病整合在一起,就能得出 ROP 的严重程度,从而开发出一个可解释的人工智能系统,根据病变类型提供分期,根据病变位置提供分区,并根据加号病分类模型提供是否存在加号病。据此计算出 ROP 的严重程度,并与人类专家的评估进行比较。我们的方法在评估 ROP 严重程度时的曲线下面积 (AUC) 为 0.95(95% 置信区间 [CI] 0.90-0.98)。与临床医生相比,我们的方法在评估 ROP 严重程度方面取得了最高的 F1 分值 0.76。总之,我们开发了一种可解释的人工智能系统来评估视网膜病变的严重程度,该系统在临床实践中用于视网膜病变严重程度筛查方面具有很大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Interpretable System for Screening the Severity Level of Retinopathy in Premature Infants Using Deep Learning.

Accurate evaluation of retinopathy of prematurity (ROP) severity is vital for screening and proper treatment. Current deep-learning-based automated AI systems for assessing ROP severity do not follow clinical guidelines and are opaque. The aim of this study is to develop an interpretable AI system by mimicking the clinical screening process to determine ROP severity level. A total of 6100 RetCam Ⅲ wide-field digital retinal images were collected from Guangdong Women and Children Hospital at Panyu (PY) and Zhongshan Ophthalmic Center (ZOC). A total of 3330 images of 520 pediatric patients from PY were annotated to train an object detection model to detect lesion type and location. A total of 2770 images of 81 pediatric patients from ZOC were annotated for stage, zone, and the presence of plus disease. Integrating stage, zone, and the presence of plus disease according to clinical guidelines yields ROP severity such that an interpretable AI system was developed to provide the stage from the lesion type, the zone from the lesion location, and the presence of plus disease from a plus disease classification model. The ROP severity was calculated accordingly and compared with the assessment of a human expert. Our method achieved an area under the curve (AUC) of 0.95 (95% confidence interval [CI] 0.90-0.98) in assessing the severity level of ROP. Compared with clinical doctors, our method achieved the highest F1 score value of 0.76 in assessing the severity level of ROP. In conclusion, we developed an interpretable AI system for assessing the severity level of ROP that shows significant potential for use in clinical practice for ROP severity level screening.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
期刊最新文献
A Scoping Review of 'Smart' Dressings for Diagnosing Surgical Site Infection: A Focus on Arthroplasty. Characterization of MSC Growth, Differentiation, and EV Production in CNF Hydrogels Under Static and Dynamic Cultures in Hypoxic and Normoxic Conditions. Mamba- and ResNet-Based Dual-Branch Network for Ultrasound Thyroid Nodule Segmentation. Exploring NRB Biofilm Adhesion and Biocorrosion in Oil/Water Recovery Operations Within Pipelines. Wearable Online Freezing of Gait Detection and Cueing System.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1