{"title":"利用微流体设备形成和长期培养 hiPSC 衍生的感官神经组织细胞","authors":"Takuma Ogawa, Souichi Yamada, Shuetsu Fukushi, Yuya Imai, Jiro Kawada, Kazutaka Ikeda, Seii Ohka, Shohei Kaneda","doi":"10.3390/bioengineering11080794","DOIUrl":null,"url":null,"abstract":"<p><p>Although methods for generating human induced pluripotent stem cell (hiPSC)-derived motor nerve organoids are well established, those for sensory nerve organoids are not. Therefore, this study investigated the feasibility of generating sensory nerve organoids composed of hiPSC-derived sensory neurons using a microfluidic approach. Notably, sensory neuronal axons from neurospheres containing 100,000 cells were unidirectionally elongated to form sensory nerve organoids over 6 mm long axon bundles within 14 days using I-shaped microchannels in microfluidic devices composed of polydimethylsiloxane (PDMS) chips and glass substrates. Additionally, the organoids were successfully cultured for more than 60 days by exchanging the culture medium. The percentage of nuclei located in the distal part of the axon bundles (the region 3-6 mm from the entrance of the microchannel) compared to the total number of cells in the neurosphere was 0.005% for live cells and 0.008% for dead cells. Molecular characterization confirmed the presence of the sensory neuron marker ISL LIM homeobox 1 (ISL1) and the capsaicin receptor transient receptor potential vanilloid 1 (TRPV1). Moreover, capsaicin stimulation activated TRPV1 in organoids, as evidenced by significant calcium ion influx. Conclusively, this study demonstrated the feasibility of long-term organoid culture and the potential applications of sensory nerve organoids in bioengineered nociceptive sensors.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11352057/pdf/","citationCount":"0","resultStr":"{\"title\":\"Formation and Long-Term Culture of hiPSC-Derived Sensory Nerve Organoids Using Microfluidic Devices.\",\"authors\":\"Takuma Ogawa, Souichi Yamada, Shuetsu Fukushi, Yuya Imai, Jiro Kawada, Kazutaka Ikeda, Seii Ohka, Shohei Kaneda\",\"doi\":\"10.3390/bioengineering11080794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although methods for generating human induced pluripotent stem cell (hiPSC)-derived motor nerve organoids are well established, those for sensory nerve organoids are not. Therefore, this study investigated the feasibility of generating sensory nerve organoids composed of hiPSC-derived sensory neurons using a microfluidic approach. Notably, sensory neuronal axons from neurospheres containing 100,000 cells were unidirectionally elongated to form sensory nerve organoids over 6 mm long axon bundles within 14 days using I-shaped microchannels in microfluidic devices composed of polydimethylsiloxane (PDMS) chips and glass substrates. Additionally, the organoids were successfully cultured for more than 60 days by exchanging the culture medium. The percentage of nuclei located in the distal part of the axon bundles (the region 3-6 mm from the entrance of the microchannel) compared to the total number of cells in the neurosphere was 0.005% for live cells and 0.008% for dead cells. Molecular characterization confirmed the presence of the sensory neuron marker ISL LIM homeobox 1 (ISL1) and the capsaicin receptor transient receptor potential vanilloid 1 (TRPV1). Moreover, capsaicin stimulation activated TRPV1 in organoids, as evidenced by significant calcium ion influx. Conclusively, this study demonstrated the feasibility of long-term organoid culture and the potential applications of sensory nerve organoids in bioengineered nociceptive sensors.</p>\",\"PeriodicalId\":8874,\"journal\":{\"name\":\"Bioengineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11352057/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bioengineering11080794\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11080794","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Formation and Long-Term Culture of hiPSC-Derived Sensory Nerve Organoids Using Microfluidic Devices.
Although methods for generating human induced pluripotent stem cell (hiPSC)-derived motor nerve organoids are well established, those for sensory nerve organoids are not. Therefore, this study investigated the feasibility of generating sensory nerve organoids composed of hiPSC-derived sensory neurons using a microfluidic approach. Notably, sensory neuronal axons from neurospheres containing 100,000 cells were unidirectionally elongated to form sensory nerve organoids over 6 mm long axon bundles within 14 days using I-shaped microchannels in microfluidic devices composed of polydimethylsiloxane (PDMS) chips and glass substrates. Additionally, the organoids were successfully cultured for more than 60 days by exchanging the culture medium. The percentage of nuclei located in the distal part of the axon bundles (the region 3-6 mm from the entrance of the microchannel) compared to the total number of cells in the neurosphere was 0.005% for live cells and 0.008% for dead cells. Molecular characterization confirmed the presence of the sensory neuron marker ISL LIM homeobox 1 (ISL1) and the capsaicin receptor transient receptor potential vanilloid 1 (TRPV1). Moreover, capsaicin stimulation activated TRPV1 in organoids, as evidenced by significant calcium ion influx. Conclusively, this study demonstrated the feasibility of long-term organoid culture and the potential applications of sensory nerve organoids in bioengineered nociceptive sensors.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering