M.C. Arostegui , P. Afonso , L. Fauconnet , J. Fontes , B.C.L. Macena , C. Meyer , T. Morato , C.D. Braun
{"title":"将鱼类地理定位前沿推进到海洋中层","authors":"M.C. Arostegui , P. Afonso , L. Fauconnet , J. Fontes , B.C.L. Macena , C. Meyer , T. Morato , C.D. Braun","doi":"10.1016/j.dsr.2024.104386","DOIUrl":null,"url":null,"abstract":"<div><p>Tracking large-scale movements of fishes in the ocean’s midwaters, below the euphotic zone and above the seafloor, is extremely challenging. Archival satellite telemetry devices rely on light, sea surface temperature, or bottom depth data to estimate location. Consequently, geolocation of fishes inhabiting the twilight (mesopelagic: 200–1000 m) and midnight (bathypelagic: 1000–4000 m) zones has been restricted to hypothesized movement routes, thereby precluding a baseline ecological understanding against which to assess potential anthropogenic impacts. We assessed the viability of comparing depth-temperature profiles measured by animal-borne satellite tags against those from 3D ocean-resolving models and incorporated known locations from acoustic telemetry to enable a quantitative framework for deep-sea geolocation. Testing of alternative, data-driven likelihood scenarios on a deep-water shark species assemblage with marked variation in modal depth distributions confirmed that the methodological frontier of geolocation can be advanced into the twilight and midnight zones. We identify key limitations in deep-water geolocation, and ways to overcome them, identifying a viable path for robust location estimates that can help address the knowledge gap on fish movement ecology in the deep sea. Our findings suggest that leveraging state-of-the-art geolocation approaches, in combination with novel technologies, raises new opportunities for studying enigmatic deep-ocean ecosystems.</p></div>","PeriodicalId":51009,"journal":{"name":"Deep-Sea Research Part I-Oceanographic Research Papers","volume":"212 ","pages":"Article 104386"},"PeriodicalIF":2.3000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing the frontier of fish geolocation into the ocean’s midwaters\",\"authors\":\"M.C. Arostegui , P. Afonso , L. Fauconnet , J. Fontes , B.C.L. Macena , C. Meyer , T. Morato , C.D. Braun\",\"doi\":\"10.1016/j.dsr.2024.104386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Tracking large-scale movements of fishes in the ocean’s midwaters, below the euphotic zone and above the seafloor, is extremely challenging. Archival satellite telemetry devices rely on light, sea surface temperature, or bottom depth data to estimate location. Consequently, geolocation of fishes inhabiting the twilight (mesopelagic: 200–1000 m) and midnight (bathypelagic: 1000–4000 m) zones has been restricted to hypothesized movement routes, thereby precluding a baseline ecological understanding against which to assess potential anthropogenic impacts. We assessed the viability of comparing depth-temperature profiles measured by animal-borne satellite tags against those from 3D ocean-resolving models and incorporated known locations from acoustic telemetry to enable a quantitative framework for deep-sea geolocation. Testing of alternative, data-driven likelihood scenarios on a deep-water shark species assemblage with marked variation in modal depth distributions confirmed that the methodological frontier of geolocation can be advanced into the twilight and midnight zones. We identify key limitations in deep-water geolocation, and ways to overcome them, identifying a viable path for robust location estimates that can help address the knowledge gap on fish movement ecology in the deep sea. Our findings suggest that leveraging state-of-the-art geolocation approaches, in combination with novel technologies, raises new opportunities for studying enigmatic deep-ocean ecosystems.</p></div>\",\"PeriodicalId\":51009,\"journal\":{\"name\":\"Deep-Sea Research Part I-Oceanographic Research Papers\",\"volume\":\"212 \",\"pages\":\"Article 104386\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Deep-Sea Research Part I-Oceanographic Research Papers\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0967063724001560\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Deep-Sea Research Part I-Oceanographic Research Papers","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967063724001560","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
Advancing the frontier of fish geolocation into the ocean’s midwaters
Tracking large-scale movements of fishes in the ocean’s midwaters, below the euphotic zone and above the seafloor, is extremely challenging. Archival satellite telemetry devices rely on light, sea surface temperature, or bottom depth data to estimate location. Consequently, geolocation of fishes inhabiting the twilight (mesopelagic: 200–1000 m) and midnight (bathypelagic: 1000–4000 m) zones has been restricted to hypothesized movement routes, thereby precluding a baseline ecological understanding against which to assess potential anthropogenic impacts. We assessed the viability of comparing depth-temperature profiles measured by animal-borne satellite tags against those from 3D ocean-resolving models and incorporated known locations from acoustic telemetry to enable a quantitative framework for deep-sea geolocation. Testing of alternative, data-driven likelihood scenarios on a deep-water shark species assemblage with marked variation in modal depth distributions confirmed that the methodological frontier of geolocation can be advanced into the twilight and midnight zones. We identify key limitations in deep-water geolocation, and ways to overcome them, identifying a viable path for robust location estimates that can help address the knowledge gap on fish movement ecology in the deep sea. Our findings suggest that leveraging state-of-the-art geolocation approaches, in combination with novel technologies, raises new opportunities for studying enigmatic deep-ocean ecosystems.
期刊介绍:
Deep-Sea Research Part I: Oceanographic Research Papers is devoted to the publication of the results of original scientific research, including theoretical work of evident oceanographic applicability; and the solution of instrumental or methodological problems with evidence of successful use. The journal is distinguished by its interdisciplinary nature and its breadth, covering the geological, physical, chemical and biological aspects of the ocean and its boundaries with the sea floor and the atmosphere. In addition to regular "Research Papers" and "Instruments and Methods" papers, briefer communications may be published as "Notes". Supplemental matter, such as extensive data tables or graphs and multimedia content, may be published as electronic appendices.