整合图卷积网络,加强生物医学关系提取的及时学习

IF 4 2区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Biomedical Informatics Pub Date : 2024-09-01 DOI:10.1016/j.jbi.2024.104717
Bocheng Guo , Jiana Meng , Di Zhao , Xiangxing Jia , Yonghe Chu , Hongfei Lin
{"title":"整合图卷积网络,加强生物医学关系提取的及时学习","authors":"Bocheng Guo ,&nbsp;Jiana Meng ,&nbsp;Di Zhao ,&nbsp;Xiangxing Jia ,&nbsp;Yonghe Chu ,&nbsp;Hongfei Lin","doi":"10.1016/j.jbi.2024.104717","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and Objective:</h3><p>Biomedical relation extraction aims to reveal the relation between entities in medical texts. Currently, the relation extraction models that have attracted much attention are mainly to fine-tune the pre-trained language models (PLMs) or add template prompt learning, which also limits the ability of the model to deal with grammatical dependencies. Graph convolutional networks (GCNs) can play an important role in processing syntactic dependencies in biomedical texts.</p></div><div><h3>Methods:</h3><p>In this work, we propose a biomedical relation extraction model that fuses GCNs enhanced prompt learning to handle limitations in syntactic dependencies and achieve good performance. Specifically, we propose a model that combines prompt learning with GCNs for relation extraction, by integrating the syntactic dependency information analyzed by GCNs into the prompt learning model, by predicting the correspondence with [MASK] tokens labels for relation extraction.</p></div><div><h3>Results:</h3><p>Our model achieved F1 scores of 85.57%, 80.15%, 95.10%, and 84.11% in the biomedical relation extraction datasets GAD, ChemProt, PGR, and DDI, respectively, all of which outperform some existing baseline models.</p></div><div><h3>Conclusions:</h3><p>In this paper, we propose enhancing prompt learning through GCNs, integrating syntactic information into biomedical relation extraction tasks. Experimental results show that our proposed method achieves excellent performance in the biomedical relation extraction task.</p></div>","PeriodicalId":15263,"journal":{"name":"Journal of Biomedical Informatics","volume":"157 ","pages":"Article 104717"},"PeriodicalIF":4.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating graph convolutional networks to enhance prompt learning for biomedical relation extraction\",\"authors\":\"Bocheng Guo ,&nbsp;Jiana Meng ,&nbsp;Di Zhao ,&nbsp;Xiangxing Jia ,&nbsp;Yonghe Chu ,&nbsp;Hongfei Lin\",\"doi\":\"10.1016/j.jbi.2024.104717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background and Objective:</h3><p>Biomedical relation extraction aims to reveal the relation between entities in medical texts. Currently, the relation extraction models that have attracted much attention are mainly to fine-tune the pre-trained language models (PLMs) or add template prompt learning, which also limits the ability of the model to deal with grammatical dependencies. Graph convolutional networks (GCNs) can play an important role in processing syntactic dependencies in biomedical texts.</p></div><div><h3>Methods:</h3><p>In this work, we propose a biomedical relation extraction model that fuses GCNs enhanced prompt learning to handle limitations in syntactic dependencies and achieve good performance. Specifically, we propose a model that combines prompt learning with GCNs for relation extraction, by integrating the syntactic dependency information analyzed by GCNs into the prompt learning model, by predicting the correspondence with [MASK] tokens labels for relation extraction.</p></div><div><h3>Results:</h3><p>Our model achieved F1 scores of 85.57%, 80.15%, 95.10%, and 84.11% in the biomedical relation extraction datasets GAD, ChemProt, PGR, and DDI, respectively, all of which outperform some existing baseline models.</p></div><div><h3>Conclusions:</h3><p>In this paper, we propose enhancing prompt learning through GCNs, integrating syntactic information into biomedical relation extraction tasks. Experimental results show that our proposed method achieves excellent performance in the biomedical relation extraction task.</p></div>\",\"PeriodicalId\":15263,\"journal\":{\"name\":\"Journal of Biomedical Informatics\",\"volume\":\"157 \",\"pages\":\"Article 104717\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1532046424001357\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532046424001357","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

背景与目的:生物医学关系提取旨在揭示医学文本中实体之间的关系。目前,备受关注的关系提取模型主要是对预训练语言模型(PLM)进行微调或添加模板提示学习,这也限制了模型处理语法依赖关系的能力。方法:在这项工作中,我们提出了一种生物医学关系提取模型,该模型融合了增强型提示学习(GCNs enhanced prompt learning),以处理语法依赖关系的局限性并获得良好的性能。具体来说,我们提出了一种将提示学习与 GCNs 结合起来进行关系提取的模型,将 GCNs 分析的句法依赖信息整合到提示学习模型中,通过预测与 [MASK] 标记的对应关系进行关系提取。结果:在生物医学关系提取数据集 GAD、ChemProt、PGR 和 DDI 中,我们的模型分别取得了 85.57%、80.15%、95.10% 和 84.11% 的 F1 分数,均优于现有的一些基线模型。实验结果表明,我们提出的方法在生物医学关系提取任务中取得了优异的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrating graph convolutional networks to enhance prompt learning for biomedical relation extraction

Background and Objective:

Biomedical relation extraction aims to reveal the relation between entities in medical texts. Currently, the relation extraction models that have attracted much attention are mainly to fine-tune the pre-trained language models (PLMs) or add template prompt learning, which also limits the ability of the model to deal with grammatical dependencies. Graph convolutional networks (GCNs) can play an important role in processing syntactic dependencies in biomedical texts.

Methods:

In this work, we propose a biomedical relation extraction model that fuses GCNs enhanced prompt learning to handle limitations in syntactic dependencies and achieve good performance. Specifically, we propose a model that combines prompt learning with GCNs for relation extraction, by integrating the syntactic dependency information analyzed by GCNs into the prompt learning model, by predicting the correspondence with [MASK] tokens labels for relation extraction.

Results:

Our model achieved F1 scores of 85.57%, 80.15%, 95.10%, and 84.11% in the biomedical relation extraction datasets GAD, ChemProt, PGR, and DDI, respectively, all of which outperform some existing baseline models.

Conclusions:

In this paper, we propose enhancing prompt learning through GCNs, integrating syntactic information into biomedical relation extraction tasks. Experimental results show that our proposed method achieves excellent performance in the biomedical relation extraction task.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomedical Informatics
Journal of Biomedical Informatics 医学-计算机:跨学科应用
CiteScore
8.90
自引率
6.70%
发文量
243
审稿时长
32 days
期刊介绍: The Journal of Biomedical Informatics reflects a commitment to high-quality original research papers, reviews, and commentaries in the area of biomedical informatics methodology. Although we publish articles motivated by applications in the biomedical sciences (for example, clinical medicine, health care, population health, and translational bioinformatics), the journal emphasizes reports of new methodologies and techniques that have general applicability and that form the basis for the evolving science of biomedical informatics. Articles on medical devices; evaluations of implemented systems (including clinical trials of information technologies); or papers that provide insight into a biological process, a specific disease, or treatment options would generally be more suitable for publication in other venues. Papers on applications of signal processing and image analysis are often more suitable for biomedical engineering journals or other informatics journals, although we do publish papers that emphasize the information management and knowledge representation/modeling issues that arise in the storage and use of biological signals and images. System descriptions are welcome if they illustrate and substantiate the underlying methodology that is the principal focus of the report and an effort is made to address the generalizability and/or range of application of that methodology. Note also that, given the international nature of JBI, papers that deal with specific languages other than English, or with country-specific health systems or approaches, are acceptable for JBI only if they offer generalizable lessons that are relevant to the broad JBI readership, regardless of their country, language, culture, or health system.
期刊最新文献
Early multi-cancer detection through deep learning: An anomaly detection approach using Variational Autoencoder. Importance of variables from different time frames for predicting self-harm using health system data. Cross-Modal self-supervised vision language pre-training with multiple objectives for medical visual question answering Machine learning approaches for the discovery of clinical pathways from patient data: A systematic review MultiADE: A Multi-domain benchmark for Adverse Drug Event extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1