Bocheng Guo , Jiana Meng , Di Zhao , Xiangxing Jia , Yonghe Chu , Hongfei Lin
{"title":"整合图卷积网络,加强生物医学关系提取的及时学习","authors":"Bocheng Guo , Jiana Meng , Di Zhao , Xiangxing Jia , Yonghe Chu , Hongfei Lin","doi":"10.1016/j.jbi.2024.104717","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and Objective:</h3><p>Biomedical relation extraction aims to reveal the relation between entities in medical texts. Currently, the relation extraction models that have attracted much attention are mainly to fine-tune the pre-trained language models (PLMs) or add template prompt learning, which also limits the ability of the model to deal with grammatical dependencies. Graph convolutional networks (GCNs) can play an important role in processing syntactic dependencies in biomedical texts.</p></div><div><h3>Methods:</h3><p>In this work, we propose a biomedical relation extraction model that fuses GCNs enhanced prompt learning to handle limitations in syntactic dependencies and achieve good performance. Specifically, we propose a model that combines prompt learning with GCNs for relation extraction, by integrating the syntactic dependency information analyzed by GCNs into the prompt learning model, by predicting the correspondence with [MASK] tokens labels for relation extraction.</p></div><div><h3>Results:</h3><p>Our model achieved F1 scores of 85.57%, 80.15%, 95.10%, and 84.11% in the biomedical relation extraction datasets GAD, ChemProt, PGR, and DDI, respectively, all of which outperform some existing baseline models.</p></div><div><h3>Conclusions:</h3><p>In this paper, we propose enhancing prompt learning through GCNs, integrating syntactic information into biomedical relation extraction tasks. Experimental results show that our proposed method achieves excellent performance in the biomedical relation extraction task.</p></div>","PeriodicalId":15263,"journal":{"name":"Journal of Biomedical Informatics","volume":"157 ","pages":"Article 104717"},"PeriodicalIF":4.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating graph convolutional networks to enhance prompt learning for biomedical relation extraction\",\"authors\":\"Bocheng Guo , Jiana Meng , Di Zhao , Xiangxing Jia , Yonghe Chu , Hongfei Lin\",\"doi\":\"10.1016/j.jbi.2024.104717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background and Objective:</h3><p>Biomedical relation extraction aims to reveal the relation between entities in medical texts. Currently, the relation extraction models that have attracted much attention are mainly to fine-tune the pre-trained language models (PLMs) or add template prompt learning, which also limits the ability of the model to deal with grammatical dependencies. Graph convolutional networks (GCNs) can play an important role in processing syntactic dependencies in biomedical texts.</p></div><div><h3>Methods:</h3><p>In this work, we propose a biomedical relation extraction model that fuses GCNs enhanced prompt learning to handle limitations in syntactic dependencies and achieve good performance. Specifically, we propose a model that combines prompt learning with GCNs for relation extraction, by integrating the syntactic dependency information analyzed by GCNs into the prompt learning model, by predicting the correspondence with [MASK] tokens labels for relation extraction.</p></div><div><h3>Results:</h3><p>Our model achieved F1 scores of 85.57%, 80.15%, 95.10%, and 84.11% in the biomedical relation extraction datasets GAD, ChemProt, PGR, and DDI, respectively, all of which outperform some existing baseline models.</p></div><div><h3>Conclusions:</h3><p>In this paper, we propose enhancing prompt learning through GCNs, integrating syntactic information into biomedical relation extraction tasks. Experimental results show that our proposed method achieves excellent performance in the biomedical relation extraction task.</p></div>\",\"PeriodicalId\":15263,\"journal\":{\"name\":\"Journal of Biomedical Informatics\",\"volume\":\"157 \",\"pages\":\"Article 104717\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1532046424001357\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532046424001357","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Integrating graph convolutional networks to enhance prompt learning for biomedical relation extraction
Background and Objective:
Biomedical relation extraction aims to reveal the relation between entities in medical texts. Currently, the relation extraction models that have attracted much attention are mainly to fine-tune the pre-trained language models (PLMs) or add template prompt learning, which also limits the ability of the model to deal with grammatical dependencies. Graph convolutional networks (GCNs) can play an important role in processing syntactic dependencies in biomedical texts.
Methods:
In this work, we propose a biomedical relation extraction model that fuses GCNs enhanced prompt learning to handle limitations in syntactic dependencies and achieve good performance. Specifically, we propose a model that combines prompt learning with GCNs for relation extraction, by integrating the syntactic dependency information analyzed by GCNs into the prompt learning model, by predicting the correspondence with [MASK] tokens labels for relation extraction.
Results:
Our model achieved F1 scores of 85.57%, 80.15%, 95.10%, and 84.11% in the biomedical relation extraction datasets GAD, ChemProt, PGR, and DDI, respectively, all of which outperform some existing baseline models.
Conclusions:
In this paper, we propose enhancing prompt learning through GCNs, integrating syntactic information into biomedical relation extraction tasks. Experimental results show that our proposed method achieves excellent performance in the biomedical relation extraction task.
期刊介绍:
The Journal of Biomedical Informatics reflects a commitment to high-quality original research papers, reviews, and commentaries in the area of biomedical informatics methodology. Although we publish articles motivated by applications in the biomedical sciences (for example, clinical medicine, health care, population health, and translational bioinformatics), the journal emphasizes reports of new methodologies and techniques that have general applicability and that form the basis for the evolving science of biomedical informatics. Articles on medical devices; evaluations of implemented systems (including clinical trials of information technologies); or papers that provide insight into a biological process, a specific disease, or treatment options would generally be more suitable for publication in other venues. Papers on applications of signal processing and image analysis are often more suitable for biomedical engineering journals or other informatics journals, although we do publish papers that emphasize the information management and knowledge representation/modeling issues that arise in the storage and use of biological signals and images. System descriptions are welcome if they illustrate and substantiate the underlying methodology that is the principal focus of the report and an effort is made to address the generalizability and/or range of application of that methodology. Note also that, given the international nature of JBI, papers that deal with specific languages other than English, or with country-specific health systems or approaches, are acceptable for JBI only if they offer generalizable lessons that are relevant to the broad JBI readership, regardless of their country, language, culture, or health system.