{"title":"管道钢焊接接头材料约束效应的实验和数值研究","authors":"Yinhui Zhang, Fuxiang Wang, Zhengqiang Lei, Yanhui Zhang, Wenbo Xuan, Hui Yang, Guangyong Yang, Xin Su, Jian Chen, Ting Zhong","doi":"10.1016/j.ijpvp.2024.105301","DOIUrl":null,"url":null,"abstract":"<div><p>An in-depth analysis of the material constraint effect is crucial for accurately determining the constitutive relationship and safety evaluation of pipeline steel welded joint. Therefore, this work combines experiments and finite element simulations to study the constraint effect. Through the welding method, the weld specimens with different sizes and strength mismatch conditions are prepared. The microstructure and hardness distribution of the specimens are measured, and tensile tests based on the digital image correlation (DIC) technology are conducted. Finite element models of the weld specimens with different sizes and material parameters are established, followed by tensile simulations and detailed analysis. Based on the experiments and numerical simulations, the tensile strain responses, stress-strain curves, and material parameters of different weld specimens are obtained. The results show that the smaller the weld width, the more significant the effect of the material constraint. For undermatched welds, the calculated stress of the weld metal (WM) increases with the decrease of the weld width. Additionally, the calculated stress of WM also increases with the decrease of the mismatch coefficient, where the mismatch coefficient refers to the ratio of the yield strength of WM to that of the base metal (BM). Conversely, for overmatched welds, the calculated stress of WM decreases with the decrease of the weld width. The material constraint effect is also influenced by the mismatch condition of the weld. An increase in the mismatch coefficient reduces the effective range of the stress-strain curve obtainable for WM. To analyze the effect of the mismatch condition, it is necessary to comprehensively compare the yield strength and strain hardening capacity of each material. The width-to-thickness ratio of the weld specimen has little effect on the calculated stress of WM. The finite element simulation method can be used to correct the stress-strain curves obtained from the tests to achieve accurate constitutive relationships.</p></div>","PeriodicalId":54946,"journal":{"name":"International Journal of Pressure Vessels and Piping","volume":"211 ","pages":"Article 105301"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and numerical study on the material constraint effect in pipeline steel welded joint\",\"authors\":\"Yinhui Zhang, Fuxiang Wang, Zhengqiang Lei, Yanhui Zhang, Wenbo Xuan, Hui Yang, Guangyong Yang, Xin Su, Jian Chen, Ting Zhong\",\"doi\":\"10.1016/j.ijpvp.2024.105301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An in-depth analysis of the material constraint effect is crucial for accurately determining the constitutive relationship and safety evaluation of pipeline steel welded joint. Therefore, this work combines experiments and finite element simulations to study the constraint effect. Through the welding method, the weld specimens with different sizes and strength mismatch conditions are prepared. The microstructure and hardness distribution of the specimens are measured, and tensile tests based on the digital image correlation (DIC) technology are conducted. Finite element models of the weld specimens with different sizes and material parameters are established, followed by tensile simulations and detailed analysis. Based on the experiments and numerical simulations, the tensile strain responses, stress-strain curves, and material parameters of different weld specimens are obtained. The results show that the smaller the weld width, the more significant the effect of the material constraint. For undermatched welds, the calculated stress of the weld metal (WM) increases with the decrease of the weld width. Additionally, the calculated stress of WM also increases with the decrease of the mismatch coefficient, where the mismatch coefficient refers to the ratio of the yield strength of WM to that of the base metal (BM). Conversely, for overmatched welds, the calculated stress of WM decreases with the decrease of the weld width. The material constraint effect is also influenced by the mismatch condition of the weld. An increase in the mismatch coefficient reduces the effective range of the stress-strain curve obtainable for WM. To analyze the effect of the mismatch condition, it is necessary to comprehensively compare the yield strength and strain hardening capacity of each material. The width-to-thickness ratio of the weld specimen has little effect on the calculated stress of WM. The finite element simulation method can be used to correct the stress-strain curves obtained from the tests to achieve accurate constitutive relationships.</p></div>\",\"PeriodicalId\":54946,\"journal\":{\"name\":\"International Journal of Pressure Vessels and Piping\",\"volume\":\"211 \",\"pages\":\"Article 105301\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Pressure Vessels and Piping\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0308016124001789\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pressure Vessels and Piping","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308016124001789","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Experimental and numerical study on the material constraint effect in pipeline steel welded joint
An in-depth analysis of the material constraint effect is crucial for accurately determining the constitutive relationship and safety evaluation of pipeline steel welded joint. Therefore, this work combines experiments and finite element simulations to study the constraint effect. Through the welding method, the weld specimens with different sizes and strength mismatch conditions are prepared. The microstructure and hardness distribution of the specimens are measured, and tensile tests based on the digital image correlation (DIC) technology are conducted. Finite element models of the weld specimens with different sizes and material parameters are established, followed by tensile simulations and detailed analysis. Based on the experiments and numerical simulations, the tensile strain responses, stress-strain curves, and material parameters of different weld specimens are obtained. The results show that the smaller the weld width, the more significant the effect of the material constraint. For undermatched welds, the calculated stress of the weld metal (WM) increases with the decrease of the weld width. Additionally, the calculated stress of WM also increases with the decrease of the mismatch coefficient, where the mismatch coefficient refers to the ratio of the yield strength of WM to that of the base metal (BM). Conversely, for overmatched welds, the calculated stress of WM decreases with the decrease of the weld width. The material constraint effect is also influenced by the mismatch condition of the weld. An increase in the mismatch coefficient reduces the effective range of the stress-strain curve obtainable for WM. To analyze the effect of the mismatch condition, it is necessary to comprehensively compare the yield strength and strain hardening capacity of each material. The width-to-thickness ratio of the weld specimen has little effect on the calculated stress of WM. The finite element simulation method can be used to correct the stress-strain curves obtained from the tests to achieve accurate constitutive relationships.
期刊介绍:
Pressure vessel engineering technology is of importance in many branches of industry. This journal publishes the latest research results and related information on all its associated aspects, with particular emphasis on the structural integrity assessment, maintenance and life extension of pressurised process engineering plants.
The anticipated coverage of the International Journal of Pressure Vessels and Piping ranges from simple mass-produced pressure vessels to large custom-built vessels and tanks. Pressure vessels technology is a developing field, and contributions on the following topics will therefore be welcome:
• Pressure vessel engineering
• Structural integrity assessment
• Design methods
• Codes and standards
• Fabrication and welding
• Materials properties requirements
• Inspection and quality management
• Maintenance and life extension
• Ageing and environmental effects
• Life management
Of particular importance are papers covering aspects of significant practical application which could lead to major improvements in economy, reliability and useful life. While most accepted papers represent the results of original applied research, critical reviews of topical interest by world-leading experts will also appear from time to time.
International Journal of Pressure Vessels and Piping is indispensable reading for engineering professionals involved in the energy, petrochemicals, process plant, transport, aerospace and related industries; for manufacturers of pressure vessels and ancillary equipment; and for academics pursuing research in these areas.