聚偏二氟乙烯-碱木素混合物:开发薄膜的新候选材料

IF 4.9 Q1 ENGINEERING, CHEMICAL Journal of Membrane Science Letters Pub Date : 2024-08-29 DOI:10.1016/j.memlet.2024.100081
Serena Regina, Teresa Poerio, Rosalinda Mazzei, Lidietta Giorno
{"title":"聚偏二氟乙烯-碱木素混合物:开发薄膜的新候选材料","authors":"Serena Regina,&nbsp;Teresa Poerio,&nbsp;Rosalinda Mazzei,&nbsp;Lidietta Giorno","doi":"10.1016/j.memlet.2024.100081","DOIUrl":null,"url":null,"abstract":"<div><p>New blend membranes consisting of a tuned ratio of polyvinylidene fluoride (PVDF) and alkali lignin (AL) were studied. Through the use of a green solvent like dimethyl sulfoxide, effective mixing between PVDF and AL was achieved, leading to the development of highly hydrophilic membranes with robust mechanical stability. Characterization methods confirmed the suitability of the blend for membrane preparation and its hydrophilic nature.</p><p>A key aspect of the strategy involved hydrophilizing PVDF during the preparation process by blending it with AL in the pot. This approach aimed to streamline production by reducing the number of steps compared to post-treatment methods such as grafting or coating. The presence of hydrophobic/hydrophilic groups in the AL structure addressed the challenge of compatibility between PVDF and conventional hydrophilic polymers, enhancing interaction between the components.</p><p>The resulting hydrophilic material exhibited improved pure water permeance and demonstrated resistance to irreversible fouling. The membrane's ability to process wastewater streams and its resistance to fouling was demonstrated by separating stable and uniform submicron oil-in-water emulsions with high rejection (&gt;99.9 %) up to a volume reduction factor (VRF) of 7.7.</p></div>","PeriodicalId":100805,"journal":{"name":"Journal of Membrane Science Letters","volume":"4 2","pages":"Article 100081"},"PeriodicalIF":4.9000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772421224000151/pdfft?md5=aa92dbc31fdee0cb574b9097a0a31edf&pid=1-s2.0-S2772421224000151-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Polyvinylidene fluoride-alkali lignin blend: A new candidate for membranes development\",\"authors\":\"Serena Regina,&nbsp;Teresa Poerio,&nbsp;Rosalinda Mazzei,&nbsp;Lidietta Giorno\",\"doi\":\"10.1016/j.memlet.2024.100081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>New blend membranes consisting of a tuned ratio of polyvinylidene fluoride (PVDF) and alkali lignin (AL) were studied. Through the use of a green solvent like dimethyl sulfoxide, effective mixing between PVDF and AL was achieved, leading to the development of highly hydrophilic membranes with robust mechanical stability. Characterization methods confirmed the suitability of the blend for membrane preparation and its hydrophilic nature.</p><p>A key aspect of the strategy involved hydrophilizing PVDF during the preparation process by blending it with AL in the pot. This approach aimed to streamline production by reducing the number of steps compared to post-treatment methods such as grafting or coating. The presence of hydrophobic/hydrophilic groups in the AL structure addressed the challenge of compatibility between PVDF and conventional hydrophilic polymers, enhancing interaction between the components.</p><p>The resulting hydrophilic material exhibited improved pure water permeance and demonstrated resistance to irreversible fouling. The membrane's ability to process wastewater streams and its resistance to fouling was demonstrated by separating stable and uniform submicron oil-in-water emulsions with high rejection (&gt;99.9 %) up to a volume reduction factor (VRF) of 7.7.</p></div>\",\"PeriodicalId\":100805,\"journal\":{\"name\":\"Journal of Membrane Science Letters\",\"volume\":\"4 2\",\"pages\":\"Article 100081\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772421224000151/pdfft?md5=aa92dbc31fdee0cb574b9097a0a31edf&pid=1-s2.0-S2772421224000151-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Membrane Science Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772421224000151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science Letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772421224000151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

研究了由经过调整的聚偏二氟乙烯(PVDF)和碱木质素(AL)比例组成的新型混合膜。通过使用二甲基亚砜等绿色溶剂,实现了聚偏二氟乙烯和碱木素的有效混合,从而开发出了具有强大机械稳定性的高亲水性膜。该策略的一个关键方面是在制备过程中通过在锅中将 PVDF 与 AL 混合来亲水。与接枝或涂层等后处理方法相比,这种方法旨在通过减少步骤来简化生产。AL 结构中疏水/亲水基团的存在解决了 PVDF 与传统亲水聚合物之间的兼容性难题,增强了各组分之间的相互作用。通过分离稳定、均匀的亚微米水包油型乳状液,并在体积减小因子(VRF)达到 7.7 时实现高排斥率(99.9%),证明了该膜处理废水流的能力及其抗污垢能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Polyvinylidene fluoride-alkali lignin blend: A new candidate for membranes development

New blend membranes consisting of a tuned ratio of polyvinylidene fluoride (PVDF) and alkali lignin (AL) were studied. Through the use of a green solvent like dimethyl sulfoxide, effective mixing between PVDF and AL was achieved, leading to the development of highly hydrophilic membranes with robust mechanical stability. Characterization methods confirmed the suitability of the blend for membrane preparation and its hydrophilic nature.

A key aspect of the strategy involved hydrophilizing PVDF during the preparation process by blending it with AL in the pot. This approach aimed to streamline production by reducing the number of steps compared to post-treatment methods such as grafting or coating. The presence of hydrophobic/hydrophilic groups in the AL structure addressed the challenge of compatibility between PVDF and conventional hydrophilic polymers, enhancing interaction between the components.

The resulting hydrophilic material exhibited improved pure water permeance and demonstrated resistance to irreversible fouling. The membrane's ability to process wastewater streams and its resistance to fouling was demonstrated by separating stable and uniform submicron oil-in-water emulsions with high rejection (>99.9 %) up to a volume reduction factor (VRF) of 7.7.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
0.00%
发文量
0
期刊最新文献
Automated membrane characterization: In-situ monitoring of the permeate and retentate solutions using a 3D printed permeate probe device Enhanced phosphate anion flux through single-ion, reverse-selective mixed-matrix cation exchange membrane Thermodynamic efficiency of membrane separation of dilute gas: Estimation for CO2 direct air capture application The solution-diffusion model: “Rumors of my death have been exaggerated” Incorporation of polyzwitterions in superabsorbent network membranes for enhanced saltwater absorption and retention
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1