Qing Zhou , Heng-Ci Tian , Liyu Shan , Sen Hu , Wei Yang , Maoyong He , Lei Zhang , Yangting Lin , Xianhua Li
{"title":"通过铷锶同位素系统学重新审视月球正长岩的形成","authors":"Qing Zhou , Heng-Ci Tian , Liyu Shan , Sen Hu , Wei Yang , Maoyong He , Lei Zhang , Yangting Lin , Xianhua Li","doi":"10.1016/j.lithos.2024.107780","DOIUrl":null,"url":null,"abstract":"<div><p>The incorporation of KREEP (potassium, rare-earth element, and phosphorus), mantle-derived mafic melts and trapped liquid into the lunar ferroan anorthosite (FAN) suite plays a pivotal role in generating their geochemical and isotopic variations. Nonetheless, the specific involvement and distinct roles of these different components remain controversial. This study presents in-situ Sr isotopic data for 28 anorthositic clasts found within lunar feldspathic meteorites to trace their sources and post-modification processes. We find that these plagioclases exhibit substantial variations in their measured <sup>87</sup>Sr/<sup>86</sup>Sr values (0.69978–0.70357), in contrast to the relatively narrow range observed in Apollo 16 FANs, thereby likely reflecting a diverse chemical composition of lunar crustal rocks. In contrast, the analyzed plagioclases have consistently low <sup>87</sup>Rb/<sup>86</sup>Sr ratios (0.00185–0.03962), similar to those of Apollo samples, reflecting impact-induced loss of Rb. Detailed investigations indicate that certain elevated <sup>87</sup>Sr/<sup>86</sup>Sr ratios are probably not caused by terrestrial contamination or instrumental analysis, but most likely result from the decay of <sup>87</sup>Rb from sources with initial <sup>87</sup>Rb/<sup>86</sup>Sr higher than 0.0119–0.1380. However, such elevated <sup>87</sup>Rb/<sup>86</sup>Sr values cannot solely result from crystallization of the lunar magma ocean (LMO) and likely involve KREEP components. Combined with trace element data, we estimate the maximum proportion of KREEP melt in the formation of lunar anorthosites. Future analyses of lunar anorthosites collected by China's Chang'e-5 and Chang'e-6 missions will be crucial for validating the observed Sr isotopic heterogeneity.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0024493724002937/pdfft?md5=6fe6594065b14f8dc43965271571baf4&pid=1-s2.0-S0024493724002937-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Revisiting the formation of lunar anorthosites via the RbSr isotope systematics\",\"authors\":\"Qing Zhou , Heng-Ci Tian , Liyu Shan , Sen Hu , Wei Yang , Maoyong He , Lei Zhang , Yangting Lin , Xianhua Li\",\"doi\":\"10.1016/j.lithos.2024.107780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The incorporation of KREEP (potassium, rare-earth element, and phosphorus), mantle-derived mafic melts and trapped liquid into the lunar ferroan anorthosite (FAN) suite plays a pivotal role in generating their geochemical and isotopic variations. Nonetheless, the specific involvement and distinct roles of these different components remain controversial. This study presents in-situ Sr isotopic data for 28 anorthositic clasts found within lunar feldspathic meteorites to trace their sources and post-modification processes. We find that these plagioclases exhibit substantial variations in their measured <sup>87</sup>Sr/<sup>86</sup>Sr values (0.69978–0.70357), in contrast to the relatively narrow range observed in Apollo 16 FANs, thereby likely reflecting a diverse chemical composition of lunar crustal rocks. In contrast, the analyzed plagioclases have consistently low <sup>87</sup>Rb/<sup>86</sup>Sr ratios (0.00185–0.03962), similar to those of Apollo samples, reflecting impact-induced loss of Rb. Detailed investigations indicate that certain elevated <sup>87</sup>Sr/<sup>86</sup>Sr ratios are probably not caused by terrestrial contamination or instrumental analysis, but most likely result from the decay of <sup>87</sup>Rb from sources with initial <sup>87</sup>Rb/<sup>86</sup>Sr higher than 0.0119–0.1380. However, such elevated <sup>87</sup>Rb/<sup>86</sup>Sr values cannot solely result from crystallization of the lunar magma ocean (LMO) and likely involve KREEP components. Combined with trace element data, we estimate the maximum proportion of KREEP melt in the formation of lunar anorthosites. Future analyses of lunar anorthosites collected by China's Chang'e-5 and Chang'e-6 missions will be crucial for validating the observed Sr isotopic heterogeneity.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0024493724002937/pdfft?md5=6fe6594065b14f8dc43965271571baf4&pid=1-s2.0-S0024493724002937-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024493724002937\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024493724002937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Revisiting the formation of lunar anorthosites via the RbSr isotope systematics
The incorporation of KREEP (potassium, rare-earth element, and phosphorus), mantle-derived mafic melts and trapped liquid into the lunar ferroan anorthosite (FAN) suite plays a pivotal role in generating their geochemical and isotopic variations. Nonetheless, the specific involvement and distinct roles of these different components remain controversial. This study presents in-situ Sr isotopic data for 28 anorthositic clasts found within lunar feldspathic meteorites to trace their sources and post-modification processes. We find that these plagioclases exhibit substantial variations in their measured 87Sr/86Sr values (0.69978–0.70357), in contrast to the relatively narrow range observed in Apollo 16 FANs, thereby likely reflecting a diverse chemical composition of lunar crustal rocks. In contrast, the analyzed plagioclases have consistently low 87Rb/86Sr ratios (0.00185–0.03962), similar to those of Apollo samples, reflecting impact-induced loss of Rb. Detailed investigations indicate that certain elevated 87Sr/86Sr ratios are probably not caused by terrestrial contamination or instrumental analysis, but most likely result from the decay of 87Rb from sources with initial 87Rb/86Sr higher than 0.0119–0.1380. However, such elevated 87Rb/86Sr values cannot solely result from crystallization of the lunar magma ocean (LMO) and likely involve KREEP components. Combined with trace element data, we estimate the maximum proportion of KREEP melt in the formation of lunar anorthosites. Future analyses of lunar anorthosites collected by China's Chang'e-5 and Chang'e-6 missions will be crucial for validating the observed Sr isotopic heterogeneity.