通过余弦相似性聚合实现拜占庭式稳健联盟学习

IF 4.4 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Computer Networks Pub Date : 2024-08-23 DOI:10.1016/j.comnet.2024.110730
{"title":"通过余弦相似性聚合实现拜占庭式稳健联盟学习","authors":"","doi":"10.1016/j.comnet.2024.110730","DOIUrl":null,"url":null,"abstract":"<div><p>Federated Learning (FL) is proposed to train a machine learning model for clients with different training data. During the training of FL, a centralized server is usually employed to aggregate local models from clients iteratively. The aggregation process suffers from Byzantine attacks, where clients’ models could be maliciously modified by attackers to degrade the training performance. Existing defense aggregation solutions use distances or angles between different gradients to identify and eliminate malicious models from clients. However, they do not work well due to the high dimensional property of the machine learning model. Distance-based solutions cannot effectively identify attackers when the gradient direction of the model is maliciously tampered with. Angle-based solutions face the issue of low model accuracy for large models. In this paper, we propose Convolutional Kernel Angle-based Defense Aggregation (CKADA) to improve defense performance under various Byzantine attacks. The key of CKADA is to use the angle between convolutional kernels as the attack detection metric because the obtuse angle indicates the wrong training direction. CKADA calculates the angle between a client’s convolutional kernel gradients and the server’s convolutional kernel gradients as the attacker detection metric and eliminates convolutional kernel gradients of clients that create an obtuse angle to mitigate the impact of attackers on the model. We evaluate the performance of CKADA using AlexNet, ResNet-50, and GoogLeNet under two typical attacks. Simulation results show that CKADA mitigates the impact of Byzantine attacks and outperforms existing angle-based solutions and distance-based solutions by improving inference accuracy up to 67% and 89% respectively.</p></div>","PeriodicalId":50637,"journal":{"name":"Computer Networks","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Byzantine-robust Federated Learning via Cosine Similarity Aggregation\",\"authors\":\"\",\"doi\":\"10.1016/j.comnet.2024.110730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Federated Learning (FL) is proposed to train a machine learning model for clients with different training data. During the training of FL, a centralized server is usually employed to aggregate local models from clients iteratively. The aggregation process suffers from Byzantine attacks, where clients’ models could be maliciously modified by attackers to degrade the training performance. Existing defense aggregation solutions use distances or angles between different gradients to identify and eliminate malicious models from clients. However, they do not work well due to the high dimensional property of the machine learning model. Distance-based solutions cannot effectively identify attackers when the gradient direction of the model is maliciously tampered with. Angle-based solutions face the issue of low model accuracy for large models. In this paper, we propose Convolutional Kernel Angle-based Defense Aggregation (CKADA) to improve defense performance under various Byzantine attacks. The key of CKADA is to use the angle between convolutional kernels as the attack detection metric because the obtuse angle indicates the wrong training direction. CKADA calculates the angle between a client’s convolutional kernel gradients and the server’s convolutional kernel gradients as the attacker detection metric and eliminates convolutional kernel gradients of clients that create an obtuse angle to mitigate the impact of attackers on the model. We evaluate the performance of CKADA using AlexNet, ResNet-50, and GoogLeNet under two typical attacks. Simulation results show that CKADA mitigates the impact of Byzantine attacks and outperforms existing angle-based solutions and distance-based solutions by improving inference accuracy up to 67% and 89% respectively.</p></div>\",\"PeriodicalId\":50637,\"journal\":{\"name\":\"Computer Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1389128624005620\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389128624005620","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

联邦学习(FL)是为拥有不同训练数据的客户端训练机器学习模型而提出的。在 FL 的训练过程中,通常采用一个集中式服务器来迭代聚合来自客户端的本地模型。聚合过程会受到拜占庭攻击,攻击者可能会恶意修改客户端的模型,从而降低训练性能。现有的防御聚合解决方案使用不同梯度之间的距离或角度来识别和消除客户端的恶意模型。然而,由于机器学习模型的高维特性,这些方案并不能很好地发挥作用。当模型的梯度方向被恶意篡改时,基于距离的解决方案无法有效识别攻击者。基于角度的解决方案面临着大型模型准确率低的问题。本文提出了基于卷积核角度的防御聚合(CKADA),以提高各种拜占庭攻击下的防御性能。CKADA 的关键在于使用卷积核之间的夹角作为攻击检测指标,因为钝角表示训练方向错误。CKADA 计算客户端卷积核梯度与服务器卷积核梯度之间的夹角作为攻击检测指标,并消除产生钝角的客户端卷积核梯度,以减轻攻击者对模型的影响。我们使用 AlexNet、ResNet-50 和 GoogLeNet 评估了 CKADA 在两种典型攻击下的性能。仿真结果表明,CKADA 能够减轻拜占庭攻击的影响,并优于现有的基于角度的解决方案和基于距离的解决方案,推理准确率分别提高了 67% 和 89%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Byzantine-robust Federated Learning via Cosine Similarity Aggregation

Federated Learning (FL) is proposed to train a machine learning model for clients with different training data. During the training of FL, a centralized server is usually employed to aggregate local models from clients iteratively. The aggregation process suffers from Byzantine attacks, where clients’ models could be maliciously modified by attackers to degrade the training performance. Existing defense aggregation solutions use distances or angles between different gradients to identify and eliminate malicious models from clients. However, they do not work well due to the high dimensional property of the machine learning model. Distance-based solutions cannot effectively identify attackers when the gradient direction of the model is maliciously tampered with. Angle-based solutions face the issue of low model accuracy for large models. In this paper, we propose Convolutional Kernel Angle-based Defense Aggregation (CKADA) to improve defense performance under various Byzantine attacks. The key of CKADA is to use the angle between convolutional kernels as the attack detection metric because the obtuse angle indicates the wrong training direction. CKADA calculates the angle between a client’s convolutional kernel gradients and the server’s convolutional kernel gradients as the attacker detection metric and eliminates convolutional kernel gradients of clients that create an obtuse angle to mitigate the impact of attackers on the model. We evaluate the performance of CKADA using AlexNet, ResNet-50, and GoogLeNet under two typical attacks. Simulation results show that CKADA mitigates the impact of Byzantine attacks and outperforms existing angle-based solutions and distance-based solutions by improving inference accuracy up to 67% and 89% respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Networks
Computer Networks 工程技术-电信学
CiteScore
10.80
自引率
3.60%
发文量
434
审稿时长
8.6 months
期刊介绍: Computer Networks is an international, archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in the computer communications networking area. The audience includes researchers, managers and operators of networks as well as designers and implementors. The Editorial Board will consider any material for publication that is of interest to those groups.
期刊最新文献
SD-MDN-TM: A traceback and mitigation integrated mechanism against DDoS attacks with IP spoofing On the aggregation of FIBs at ICN routers using routing strategy Protecting unauthenticated messages in LTE/5G mobile networks: A two-level Hierarchical Identity-Based Signature (HIBS) solution A two-step linear programming approach for repeater placement in large-scale quantum networks Network traffic prediction based on PSO-LightGBM-TM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1