大规模荟萃分析和人类攻击行为升级的神经基质网络分析

IF 4.7 2区 医学 Q1 NEUROIMAGING NeuroImage Pub Date : 2024-08-28 DOI:10.1016/j.neuroimage.2024.120824
{"title":"大规模荟萃分析和人类攻击行为升级的神经基质网络分析","authors":"","doi":"10.1016/j.neuroimage.2024.120824","DOIUrl":null,"url":null,"abstract":"<div><p>Escalated aggression represents a frequent and severe form of violence, sometimes manifesting as antisocial behavior. Driven by the pressures of modern life, escalated aggression is of particular concern due to its rising prevalence and its destructive impact on both individual well-being and socioeconomic stability. However, a consistent neural circuitry underpinning it remains to be definitively identified. Here, we addressed this issue by comparing brain alterations between individuals with escalated aggression and those without such behavioral manifestations. We first conducted a meta-analysis to synthesize previous neuroimaging studies on functional and structural alterations of escalated aggression (325 experiments, 2997 foci, 16,529 subjects). Following-up network and functional decoding analyses were conducted to provide quantitative characterizations of the identified brain regions. Our results revealed that brain regions constantly involved in escalated aggression were localized in the subcortical network (amygdala and lateral orbitofrontal cortex) associated with emotion processing, the default mode network (dorsal medial prefrontal cortex and middle temporal gyrus) associated with mentalizing, and the salience network (anterior cingulate cortex and anterior insula) associated with cognitive control. These findings were further supported by additional meta-analyses on emotion processing, mentalizing, and cognitive control, all of which showed conjunction with the brain regions identified in the escalated aggression. Together, these findings advance the understanding of the risk biomarkers of escalated aggressive populations and refine theoretical models of human aggression.</p></div>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1053811924003215/pdfft?md5=d6ff41a5184040fac671b1b963720f5b&pid=1-s2.0-S1053811924003215-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Large-scale meta-analyses and network analyses of neural substrates underlying human escalated aggression\",\"authors\":\"\",\"doi\":\"10.1016/j.neuroimage.2024.120824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Escalated aggression represents a frequent and severe form of violence, sometimes manifesting as antisocial behavior. Driven by the pressures of modern life, escalated aggression is of particular concern due to its rising prevalence and its destructive impact on both individual well-being and socioeconomic stability. However, a consistent neural circuitry underpinning it remains to be definitively identified. Here, we addressed this issue by comparing brain alterations between individuals with escalated aggression and those without such behavioral manifestations. We first conducted a meta-analysis to synthesize previous neuroimaging studies on functional and structural alterations of escalated aggression (325 experiments, 2997 foci, 16,529 subjects). Following-up network and functional decoding analyses were conducted to provide quantitative characterizations of the identified brain regions. Our results revealed that brain regions constantly involved in escalated aggression were localized in the subcortical network (amygdala and lateral orbitofrontal cortex) associated with emotion processing, the default mode network (dorsal medial prefrontal cortex and middle temporal gyrus) associated with mentalizing, and the salience network (anterior cingulate cortex and anterior insula) associated with cognitive control. These findings were further supported by additional meta-analyses on emotion processing, mentalizing, and cognitive control, all of which showed conjunction with the brain regions identified in the escalated aggression. Together, these findings advance the understanding of the risk biomarkers of escalated aggressive populations and refine theoretical models of human aggression.</p></div>\",\"PeriodicalId\":19299,\"journal\":{\"name\":\"NeuroImage\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1053811924003215/pdfft?md5=d6ff41a5184040fac671b1b963720f5b&pid=1-s2.0-S1053811924003215-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NeuroImage\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1053811924003215\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1053811924003215","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

摘要

攻击升级是一种频繁发生的严重暴力形式,有时表现为反社会行为。在现代生活压力的驱使下,攻击升级的发生率不断上升,并对个人福祉和社会经济稳定造成破坏性影响,因此格外引人关注。然而,支撑这种行为的一贯神经回路仍有待明确确定。在此,我们通过比较攻击行为升级者与无此类行为表现者的大脑变化来解决这一问题。我们首先进行了一项荟萃分析,综合了之前关于攻击行为升级的功能和结构改变的神经影像学研究(325 项实验,2997 个病灶,16529 名受试者)。我们还进行了后续的网络和功能解码分析,以提供已识别脑区的定量特征。我们的研究结果表明,持续参与攻击行为升级的脑区定位于与情绪处理相关的皮层下网络(杏仁核和外侧眶额叶皮层)、与心智化相关的默认模式网络(背内侧前额叶皮层和颞中回)以及与认知控制相关的显著性网络(前扣带回皮层和前脑岛)。关于情绪处理、思维定势和认知控制的其他荟萃分析进一步支持了这些研究结果,所有这些分析都显示了与在攻击升级中识别出的脑区的联系。这些发现共同推进了对攻击性升级人群风险生物标志物的理解,并完善了人类攻击性的理论模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Large-scale meta-analyses and network analyses of neural substrates underlying human escalated aggression

Escalated aggression represents a frequent and severe form of violence, sometimes manifesting as antisocial behavior. Driven by the pressures of modern life, escalated aggression is of particular concern due to its rising prevalence and its destructive impact on both individual well-being and socioeconomic stability. However, a consistent neural circuitry underpinning it remains to be definitively identified. Here, we addressed this issue by comparing brain alterations between individuals with escalated aggression and those without such behavioral manifestations. We first conducted a meta-analysis to synthesize previous neuroimaging studies on functional and structural alterations of escalated aggression (325 experiments, 2997 foci, 16,529 subjects). Following-up network and functional decoding analyses were conducted to provide quantitative characterizations of the identified brain regions. Our results revealed that brain regions constantly involved in escalated aggression were localized in the subcortical network (amygdala and lateral orbitofrontal cortex) associated with emotion processing, the default mode network (dorsal medial prefrontal cortex and middle temporal gyrus) associated with mentalizing, and the salience network (anterior cingulate cortex and anterior insula) associated with cognitive control. These findings were further supported by additional meta-analyses on emotion processing, mentalizing, and cognitive control, all of which showed conjunction with the brain regions identified in the escalated aggression. Together, these findings advance the understanding of the risk biomarkers of escalated aggressive populations and refine theoretical models of human aggression.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
NeuroImage
NeuroImage 医学-核医学
CiteScore
11.30
自引率
10.50%
发文量
809
审稿时长
63 days
期刊介绍: NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.
期刊最新文献
Individual contralesional recruitment in the context of structural reserve in early motor reorganization after stroke Semi-analytic three-shell forward calculation for magnetoencephalography Relationships between brain structure-function coupling in normal aging and cognition: A cross-ethnicity population-based study Distinct neural pathway and its information flow for blind individual's Braille reading Source imaging method based on diagonal covariance bases and its applications to OPM-MEG
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1