通过指纹识别和机器学习方法探索祖母绿的全球地球化学出处

Raquel Alonso-Perez , James M.D. Day , D. Graham Pearson , Yan Luo , Manuel A. Palacios , Raju Sudhakar , Aaron Palke
{"title":"通过指纹识别和机器学习方法探索祖母绿的全球地球化学出处","authors":"Raquel Alonso-Perez ,&nbsp;James M.D. Day ,&nbsp;D. Graham Pearson ,&nbsp;Yan Luo ,&nbsp;Manuel A. Palacios ,&nbsp;Raju Sudhakar ,&nbsp;Aaron Palke","doi":"10.1016/j.aiig.2024.100085","DOIUrl":null,"url":null,"abstract":"<div><p>Emeralds – the green colored variety of beryl – occur as gem-quality specimens in over fifty deposits globally. While digital traceability methods for emerald have limitations, sample-based approaches offer robust alternatives, particularly for determining the geographic origin of emerald. Three factors make emerald suitable for provenance studies and hence for developing models for origin determination. First, the diverse elemental chemistry of emerald at minor (&lt;1 wt%) and trace levels (&lt;1 to 100’s ppmw) exhibits unique inter-element fractionations between global deposits. Second, minimally destructive techniques, including laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), enable measurement of these diagnostic elemental signatures. Third, when applied to extensive datasets, machine learning (ML) techniques enable the creation of predictive models and statistical discrimination with adequate characterization of the deposits. This study employs a carefully selected dataset comprising more than 1000 LA-ICP-MS analyses of gem-quality emeralds, enriched with new analyses. This dataset represents the largest available for global emerald deposits. We conducted unsupervised exploratory analysis using Principal Component Analysis (PCA). For machine learning-based classification, we employed Support Vector Machine Classification (SVM-C), achieving an initial accuracy rate of 79%. This was enhanced to 96.8% through the use of hierarchical SVM-C with PCA filters as our modeling approach. The ML models were trained using the concentrations of eight statistically significant elements (Li, V, Cr, Fe, Sc, Ga, Rb, Cs). By leveraging high-quality LA-ICP-MS data and ML techniques, accurate identification of the geographical origin of emerald becomes possible. These models are important for accurate provenance of emerald, and from a geochemical perspective, for understanding the formation environments of beryl-bearing pegmatites and shales.</p></div>","PeriodicalId":100124,"journal":{"name":"Artificial Intelligence in Geosciences","volume":"5 ","pages":"Article 100085"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666544124000261/pdfft?md5=8ac6027d08bf9d1a8618e5ecdb9f25b3&pid=1-s2.0-S2666544124000261-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Exploring emerald global geochemical provenance through fingerprinting and machine learning methods\",\"authors\":\"Raquel Alonso-Perez ,&nbsp;James M.D. Day ,&nbsp;D. Graham Pearson ,&nbsp;Yan Luo ,&nbsp;Manuel A. Palacios ,&nbsp;Raju Sudhakar ,&nbsp;Aaron Palke\",\"doi\":\"10.1016/j.aiig.2024.100085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Emeralds – the green colored variety of beryl – occur as gem-quality specimens in over fifty deposits globally. While digital traceability methods for emerald have limitations, sample-based approaches offer robust alternatives, particularly for determining the geographic origin of emerald. Three factors make emerald suitable for provenance studies and hence for developing models for origin determination. First, the diverse elemental chemistry of emerald at minor (&lt;1 wt%) and trace levels (&lt;1 to 100’s ppmw) exhibits unique inter-element fractionations between global deposits. Second, minimally destructive techniques, including laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), enable measurement of these diagnostic elemental signatures. Third, when applied to extensive datasets, machine learning (ML) techniques enable the creation of predictive models and statistical discrimination with adequate characterization of the deposits. This study employs a carefully selected dataset comprising more than 1000 LA-ICP-MS analyses of gem-quality emeralds, enriched with new analyses. This dataset represents the largest available for global emerald deposits. We conducted unsupervised exploratory analysis using Principal Component Analysis (PCA). For machine learning-based classification, we employed Support Vector Machine Classification (SVM-C), achieving an initial accuracy rate of 79%. This was enhanced to 96.8% through the use of hierarchical SVM-C with PCA filters as our modeling approach. The ML models were trained using the concentrations of eight statistically significant elements (Li, V, Cr, Fe, Sc, Ga, Rb, Cs). By leveraging high-quality LA-ICP-MS data and ML techniques, accurate identification of the geographical origin of emerald becomes possible. These models are important for accurate provenance of emerald, and from a geochemical perspective, for understanding the formation environments of beryl-bearing pegmatites and shales.</p></div>\",\"PeriodicalId\":100124,\"journal\":{\"name\":\"Artificial Intelligence in Geosciences\",\"volume\":\"5 \",\"pages\":\"Article 100085\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666544124000261/pdfft?md5=8ac6027d08bf9d1a8618e5ecdb9f25b3&pid=1-s2.0-S2666544124000261-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence in Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666544124000261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666544124000261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

祖母绿--绿柱石的绿色品种--以宝石级标本的形式出现在全球五十多个矿床中。虽然祖母绿的数字溯源方法有其局限性,但基于样本的方法提供了可靠的替代方法,特别是在确定祖母绿的地理原产地方面。有三个因素使祖母绿适合用于产地研究,从而开发出确定原产地的模型。首先,祖母绿在微量(1 wt%)和痕量水平(1 到 100's ppmw)上的元素化学性质各不相同,在全球矿床之间表现出独特的元素间分馏。其次,包括激光烧蚀电感耦合等离子体质谱法(LA-ICP-MS)在内的破坏性最小的技术可以测量这些诊断性元素特征。第三,当应用于大量数据集时,机器学习(ML)技术能够创建预测模型,并在充分描述矿床特征的情况下进行统计判别。这项研究采用了一个精心挑选的数据集,其中包括对宝石级祖母绿进行的 1000 多项 LA-ICP-MS 分析,并添加了新的分析。该数据集是目前全球祖母绿矿床中最大的数据集。我们使用主成分分析法(PCA)进行了无监督探索性分析。在基于机器学习的分类方面,我们采用了支持向量机分类法(SVM-C),最初的准确率为 79%。通过使用带有 PCA 过滤器的分层 SVM-C 作为建模方法,准确率提高到 96.8%。我们使用八种具有统计意义的元素(锂、钒、铬、铁、钪、镓、铷、铯)的浓度来训练 ML 模型。通过利用高质量的 LA-ICP-MS 数据和 ML 技术,准确鉴定祖母绿的地理来源成为可能。这些模型对于准确确定祖母绿的产地非常重要,从地球化学的角度来看,对于了解含绿柱石伟晶岩和页岩的形成环境也非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring emerald global geochemical provenance through fingerprinting and machine learning methods

Emeralds – the green colored variety of beryl – occur as gem-quality specimens in over fifty deposits globally. While digital traceability methods for emerald have limitations, sample-based approaches offer robust alternatives, particularly for determining the geographic origin of emerald. Three factors make emerald suitable for provenance studies and hence for developing models for origin determination. First, the diverse elemental chemistry of emerald at minor (<1 wt%) and trace levels (<1 to 100’s ppmw) exhibits unique inter-element fractionations between global deposits. Second, minimally destructive techniques, including laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), enable measurement of these diagnostic elemental signatures. Third, when applied to extensive datasets, machine learning (ML) techniques enable the creation of predictive models and statistical discrimination with adequate characterization of the deposits. This study employs a carefully selected dataset comprising more than 1000 LA-ICP-MS analyses of gem-quality emeralds, enriched with new analyses. This dataset represents the largest available for global emerald deposits. We conducted unsupervised exploratory analysis using Principal Component Analysis (PCA). For machine learning-based classification, we employed Support Vector Machine Classification (SVM-C), achieving an initial accuracy rate of 79%. This was enhanced to 96.8% through the use of hierarchical SVM-C with PCA filters as our modeling approach. The ML models were trained using the concentrations of eight statistically significant elements (Li, V, Cr, Fe, Sc, Ga, Rb, Cs). By leveraging high-quality LA-ICP-MS data and ML techniques, accurate identification of the geographical origin of emerald becomes possible. These models are important for accurate provenance of emerald, and from a geochemical perspective, for understanding the formation environments of beryl-bearing pegmatites and shales.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
期刊最新文献
Convolutional sparse coding network for sparse seismic time-frequency representation Research on the prediction method for fluvial-phase sandbody connectivity based on big data analysis--a case study of Bohai a oilfield Pore size classification and prediction based on distribution of reservoir fluid volumes utilizing well logs and deep learning algorithm in a complex lithology Benchmarking data handling strategies for landslide susceptibility modeling using random forest workflows A 3D convolutional neural network model with multiple outputs for simultaneously estimating the reactive transport parameters of sandstone from its CT images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1