复合固体聚合物电解质中的磁场辅助垂直排列 NiFe2O4 纳米片,用于先进的全固态锂金属电池

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2024-08-25 DOI:10.1016/j.jcis.2024.08.174
{"title":"复合固体聚合物电解质中的磁场辅助垂直排列 NiFe2O4 纳米片,用于先进的全固态锂金属电池","authors":"","doi":"10.1016/j.jcis.2024.08.174","DOIUrl":null,"url":null,"abstract":"<div><p>Two-dimensional materials (2D Ms) as fillers have been applied in polyethylene oxide (PEO)-based electrolyte to enhance the low ionic conductivity and poor interface compatibility. However, the randomly dispersed fillers in PEO matrix result in anisotropy of Li<sup>+</sup> transportation and insufficent ionic conductivity. Herein, NiFe<sub>2</sub>O<sub>4</sub> (NFO) nanosheets are firstly introduced in polymer matrix to form vertically aligned NFO-PEO (ANFO-PEO) composite solid-state electrolytes (CSEs) through magnetic field-assisted alignment strategy. The vertically aligned NFO/PEO interface in CSEs can construct oriented Li<sup>+</sup> transport channels and maximize the utilization of high in-plane conductivity. Meanwhile, the NFO nanosheets with abundant oxygen vacancies could effectively anchor TFSI<sup>−</sup> to promote the dissociation of Li salts. Furthermore, the optimized Li<sup>+</sup> transport flux in CSEs enables homogeneous Li deposition and effectively mitigates the growth of dendrites. Owing to the synergistic effects, the ANFO-PEO CSEs exhibit high ionic conductivity (9.16 × 10<sup>−4</sup> S cm<sup>−1</sup> at 60 °C) and stable potential window up to 5.0 V vs Li/Li<sup>+</sup>. Therefore, LiFePO<sub>4</sub> in the full cell and pouch cell with ANFO-PEO CSEs could deliver excellent cycling performance (92.78 % capacity retention after 1000 cycles at 0.5C; 96.88 % capacity retention after 105 cycles at 0.1C).</p></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetic field-assisted vertically aligned NiFe2O4 nanosheets in composite solid polymer electrolytes for advanced all solid-state lithium metal batteries\",\"authors\":\"\",\"doi\":\"10.1016/j.jcis.2024.08.174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Two-dimensional materials (2D Ms) as fillers have been applied in polyethylene oxide (PEO)-based electrolyte to enhance the low ionic conductivity and poor interface compatibility. However, the randomly dispersed fillers in PEO matrix result in anisotropy of Li<sup>+</sup> transportation and insufficent ionic conductivity. Herein, NiFe<sub>2</sub>O<sub>4</sub> (NFO) nanosheets are firstly introduced in polymer matrix to form vertically aligned NFO-PEO (ANFO-PEO) composite solid-state electrolytes (CSEs) through magnetic field-assisted alignment strategy. The vertically aligned NFO/PEO interface in CSEs can construct oriented Li<sup>+</sup> transport channels and maximize the utilization of high in-plane conductivity. Meanwhile, the NFO nanosheets with abundant oxygen vacancies could effectively anchor TFSI<sup>−</sup> to promote the dissociation of Li salts. Furthermore, the optimized Li<sup>+</sup> transport flux in CSEs enables homogeneous Li deposition and effectively mitigates the growth of dendrites. Owing to the synergistic effects, the ANFO-PEO CSEs exhibit high ionic conductivity (9.16 × 10<sup>−4</sup> S cm<sup>−1</sup> at 60 °C) and stable potential window up to 5.0 V vs Li/Li<sup>+</sup>. Therefore, LiFePO<sub>4</sub> in the full cell and pouch cell with ANFO-PEO CSEs could deliver excellent cycling performance (92.78 % capacity retention after 1000 cycles at 0.5C; 96.88 % capacity retention after 105 cycles at 0.1C).</p></div>\",\"PeriodicalId\":351,\"journal\":{\"name\":\"Journal of Colloid and Interface Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021979724019568\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979724019568","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

二维材料(2D Ms)作为填料已被应用于聚氧化乙烯(PEO)基电解质中,以提高低离子电导率和较差的界面兼容性。然而,在 PEO 基质中随机分散的填料会导致 Li+ 传输的各向异性和离子导电性不足。在此,首先在聚合物基体中引入NiFe2O4(NFO)纳米片,通过磁场辅助排列策略形成垂直排列的NFO-PEO(ANFO-PEO)复合固态电解质(CSE)。CSE 中垂直排列的 NFO/PEO 界面可以构建定向 Li+ 传输通道,最大限度地利用高面内电导率。同时,具有丰富氧空位的 NFO 纳米片能有效锚定 TFSI-,促进锂盐的解离。此外,CSE 中优化的 Li+ 传输通量可实现均匀的锂沉积,并有效缓解枝晶的生长。由于这些协同效应,ANFO-PEO CSE 显示出高离子电导率(60 °C时为 9.16 × 10-4 S cm-1)和稳定的电位窗口(相对于 Li/Li+ 可达到 5.0 V)。因此,采用 ANFO-PEO CSE 的全电池和袋式电池中的磷酸铁锂可提供出色的循环性能(0.5℃ 1000 次循环后的容量保持率为 92.78%;0.1℃ 105 次循环后的容量保持率为 96.88%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Magnetic field-assisted vertically aligned NiFe2O4 nanosheets in composite solid polymer electrolytes for advanced all solid-state lithium metal batteries

Two-dimensional materials (2D Ms) as fillers have been applied in polyethylene oxide (PEO)-based electrolyte to enhance the low ionic conductivity and poor interface compatibility. However, the randomly dispersed fillers in PEO matrix result in anisotropy of Li+ transportation and insufficent ionic conductivity. Herein, NiFe2O4 (NFO) nanosheets are firstly introduced in polymer matrix to form vertically aligned NFO-PEO (ANFO-PEO) composite solid-state electrolytes (CSEs) through magnetic field-assisted alignment strategy. The vertically aligned NFO/PEO interface in CSEs can construct oriented Li+ transport channels and maximize the utilization of high in-plane conductivity. Meanwhile, the NFO nanosheets with abundant oxygen vacancies could effectively anchor TFSI to promote the dissociation of Li salts. Furthermore, the optimized Li+ transport flux in CSEs enables homogeneous Li deposition and effectively mitigates the growth of dendrites. Owing to the synergistic effects, the ANFO-PEO CSEs exhibit high ionic conductivity (9.16 × 10−4 S cm−1 at 60 °C) and stable potential window up to 5.0 V vs Li/Li+. Therefore, LiFePO4 in the full cell and pouch cell with ANFO-PEO CSEs could deliver excellent cycling performance (92.78 % capacity retention after 1000 cycles at 0.5C; 96.88 % capacity retention after 105 cycles at 0.1C).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
Mo2C-Co heterostructure with carbon nanosheets decorated carbon microtubules: Different means for high-performance lithium-sulfur batteries. Multiple-perspective design of hollow-structured cerium-vanadium-based nanopillar arrays for enhanced overall water electrolysis. NIR responsive nanosystem based on upconversion nanoparticle-engineered bacteria for immune/photodynamic combined therapy with bacteria self-clearing capability Electron‐rich SnO2 promote CO2 activation for stable electrocatalytic CO2 reduction Unravelling the anionic stability of an ether-based electrolyte with a hard carbon or metallic sodium anode for high-performance sodium-ion batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1