Andrea Di Martino , Giulia Sgattoni , Federico Purri , Alessandro Amorosi
{"title":"第四纪晚期古山谷系统的地震放大:佩斯卡拉古山谷(意大利中部)的二维地震响应分析","authors":"Andrea Di Martino , Giulia Sgattoni , Federico Purri , Alessandro Amorosi","doi":"10.1016/j.enggeo.2024.107697","DOIUrl":null,"url":null,"abstract":"<div><p>Robust site characterization and ground response analysis require a thorough understanding of subsurface features, including geophysical properties and geometries of sediment bodies. Late Quaternary paleovalley systems, often overlooked in seismic hazard assessments, represent a potential threat due to their unconsolidated infill (with shear wave velocities <200 m/s) and sharp contrast with the adjacent substrate. Through an integrated approach that combined geophysical and stratigraphic data, we characterized the subsurface of the Pescara paleovalley system. Geostatistical interpolation of microtremor measurements enabled mapping resonance frequencies, highlighting abrupt changes and delineating the paleovalley boundaries. High-resolution core descriptions were then correlated with resonance frequencies, enabling the reconstruction of a 3D geophysical depth model of the buried paleovalley morphology. Furthermore, analyzing velocity profiles from down-hole tests led to the identification of five main seismic/stratigraphic layers within the valley fill. The geometry and facies architecture were reconstructed through a cross-section transversal to the paleovalley axis and then implemented into a 2D finite element model. Seismic response was computed, revealing significant amplification factors at frequencies closely matching the direct observations. Amplification factors peaked at frequencies between 0.9 and 1.1 Hz in the paleovalley center and up to 5.5 Hz towards the flanks, reaching a factor of 4.6. These findings suggest a notable increase in amplification amplitude compared to simpler geological contexts and emphasize the potential impact on common building types. Response spectra show strong amplifications in the paleovalley system, potentially leading to an underestimation of spectral accelerations compared to NTC18 guidelines. The comparisons of 1D and 2D modeling approaches revealed minimal differences, indicating that the generally flat geometry of the valley may not exhibit clear 2D effects. However, local subsurface stratigraphy strongly influences lateral changes in seismic response, emphasizing the importance of detailed subsurface knowledge for realistic seismic response estimates.</p></div>","PeriodicalId":11567,"journal":{"name":"Engineering Geology","volume":"341 ","pages":"Article 107697"},"PeriodicalIF":6.9000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0013795224002977/pdfft?md5=c80bbda837a7f69245e70a4fa75cb1b4&pid=1-s2.0-S0013795224002977-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Seismic amplification of Late Quaternary paleovalley systems: 2D seismic response analysis of the Pescara paleovalley (Central Italy)\",\"authors\":\"Andrea Di Martino , Giulia Sgattoni , Federico Purri , Alessandro Amorosi\",\"doi\":\"10.1016/j.enggeo.2024.107697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Robust site characterization and ground response analysis require a thorough understanding of subsurface features, including geophysical properties and geometries of sediment bodies. Late Quaternary paleovalley systems, often overlooked in seismic hazard assessments, represent a potential threat due to their unconsolidated infill (with shear wave velocities <200 m/s) and sharp contrast with the adjacent substrate. Through an integrated approach that combined geophysical and stratigraphic data, we characterized the subsurface of the Pescara paleovalley system. Geostatistical interpolation of microtremor measurements enabled mapping resonance frequencies, highlighting abrupt changes and delineating the paleovalley boundaries. High-resolution core descriptions were then correlated with resonance frequencies, enabling the reconstruction of a 3D geophysical depth model of the buried paleovalley morphology. Furthermore, analyzing velocity profiles from down-hole tests led to the identification of five main seismic/stratigraphic layers within the valley fill. The geometry and facies architecture were reconstructed through a cross-section transversal to the paleovalley axis and then implemented into a 2D finite element model. Seismic response was computed, revealing significant amplification factors at frequencies closely matching the direct observations. Amplification factors peaked at frequencies between 0.9 and 1.1 Hz in the paleovalley center and up to 5.5 Hz towards the flanks, reaching a factor of 4.6. These findings suggest a notable increase in amplification amplitude compared to simpler geological contexts and emphasize the potential impact on common building types. Response spectra show strong amplifications in the paleovalley system, potentially leading to an underestimation of spectral accelerations compared to NTC18 guidelines. The comparisons of 1D and 2D modeling approaches revealed minimal differences, indicating that the generally flat geometry of the valley may not exhibit clear 2D effects. However, local subsurface stratigraphy strongly influences lateral changes in seismic response, emphasizing the importance of detailed subsurface knowledge for realistic seismic response estimates.</p></div>\",\"PeriodicalId\":11567,\"journal\":{\"name\":\"Engineering Geology\",\"volume\":\"341 \",\"pages\":\"Article 107697\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0013795224002977/pdfft?md5=c80bbda837a7f69245e70a4fa75cb1b4&pid=1-s2.0-S0013795224002977-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013795224002977\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013795224002977","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Seismic amplification of Late Quaternary paleovalley systems: 2D seismic response analysis of the Pescara paleovalley (Central Italy)
Robust site characterization and ground response analysis require a thorough understanding of subsurface features, including geophysical properties and geometries of sediment bodies. Late Quaternary paleovalley systems, often overlooked in seismic hazard assessments, represent a potential threat due to their unconsolidated infill (with shear wave velocities <200 m/s) and sharp contrast with the adjacent substrate. Through an integrated approach that combined geophysical and stratigraphic data, we characterized the subsurface of the Pescara paleovalley system. Geostatistical interpolation of microtremor measurements enabled mapping resonance frequencies, highlighting abrupt changes and delineating the paleovalley boundaries. High-resolution core descriptions were then correlated with resonance frequencies, enabling the reconstruction of a 3D geophysical depth model of the buried paleovalley morphology. Furthermore, analyzing velocity profiles from down-hole tests led to the identification of five main seismic/stratigraphic layers within the valley fill. The geometry and facies architecture were reconstructed through a cross-section transversal to the paleovalley axis and then implemented into a 2D finite element model. Seismic response was computed, revealing significant amplification factors at frequencies closely matching the direct observations. Amplification factors peaked at frequencies between 0.9 and 1.1 Hz in the paleovalley center and up to 5.5 Hz towards the flanks, reaching a factor of 4.6. These findings suggest a notable increase in amplification amplitude compared to simpler geological contexts and emphasize the potential impact on common building types. Response spectra show strong amplifications in the paleovalley system, potentially leading to an underestimation of spectral accelerations compared to NTC18 guidelines. The comparisons of 1D and 2D modeling approaches revealed minimal differences, indicating that the generally flat geometry of the valley may not exhibit clear 2D effects. However, local subsurface stratigraphy strongly influences lateral changes in seismic response, emphasizing the importance of detailed subsurface knowledge for realistic seismic response estimates.
期刊介绍:
Engineering Geology, an international interdisciplinary journal, serves as a bridge between earth sciences and engineering, focusing on geological and geotechnical engineering. It welcomes studies with relevance to engineering, environmental concerns, and safety, catering to engineering geologists with backgrounds in geology or civil/mining engineering. Topics include applied geomorphology, structural geology, geophysics, geochemistry, environmental geology, hydrogeology, land use planning, natural hazards, remote sensing, soil and rock mechanics, and applied geotechnical engineering. The journal provides a platform for research at the intersection of geology and engineering disciplines.