利用机器学习从 CT 血管造影预测颈动脉症状:放射组学和深度学习方法

IF 1.8 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING European Journal of Radiology Open Pub Date : 2024-08-31 DOI:10.1016/j.ejro.2024.100594
Elizabeth P.V. Le , Mark Y.Z. Wong , Leonardo Rundo , Jason M. Tarkin , Nicholas R. Evans , Jonathan R. Weir-McCall , Mohammed M. Chowdhury , Patrick A. Coughlin , Holly Pavey , Fulvio Zaccagna , Chris Wall , Rouchelle Sriranjan , Andrej Corovic , Yuan Huang , Elizabeth A. Warburton , Evis Sala , Michael Roberts , Carola-Bibiane Schönlieb , James H.F. Rudd
{"title":"利用机器学习从 CT 血管造影预测颈动脉症状:放射组学和深度学习方法","authors":"Elizabeth P.V. Le ,&nbsp;Mark Y.Z. Wong ,&nbsp;Leonardo Rundo ,&nbsp;Jason M. Tarkin ,&nbsp;Nicholas R. Evans ,&nbsp;Jonathan R. Weir-McCall ,&nbsp;Mohammed M. Chowdhury ,&nbsp;Patrick A. Coughlin ,&nbsp;Holly Pavey ,&nbsp;Fulvio Zaccagna ,&nbsp;Chris Wall ,&nbsp;Rouchelle Sriranjan ,&nbsp;Andrej Corovic ,&nbsp;Yuan Huang ,&nbsp;Elizabeth A. Warburton ,&nbsp;Evis Sala ,&nbsp;Michael Roberts ,&nbsp;Carola-Bibiane Schönlieb ,&nbsp;James H.F. Rudd","doi":"10.1016/j.ejro.2024.100594","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>To assess radiomics and deep learning (DL) methods in identifying symptomatic Carotid Artery Disease (CAD) from carotid CT angiography (CTA) images. We further compare the performance of these novel methods to the conventional calcium score.</p></div><div><h3>Methods</h3><p>Carotid CT angiography (CTA) images from symptomatic patients (ischaemic stroke/transient ischaemic attack within the last 3 months) and asymptomatic patients were analysed. Carotid arteries were classified into culprit, non-culprit and asymptomatic. The calcium score was assessed using the Agatston method. 93 radiomic features were extracted from regions-of-interest drawn on 14 consecutive CTA slices. For DL, convolutional neural networks (CNNs) with and without transfer learning were trained directly on CTA slices. Predictive performance was assessed over 5-fold cross validated AUC scores. SHAP and GRAD-CAM algorithms were used for explainability.</p></div><div><h3>Results</h3><p>132 carotid arteries were analysed (41 culprit, 41 non-culprit, and 50 asymptomatic). For asymptomatic vs symptomatic arteries, radiomics attained a mean AUC of 0.96(± 0.02), followed by DL 0.86(± 0.06) and then calcium 0.79(± 0.08). For culprit vs non-culprit arteries, radiomics achieved a mean AUC of 0.75(± 0.09), followed by DL 0.67(± 0.10) and then calcium 0.60(± 0.02). For multi-class classification, the mean AUCs were 0.95(± 0.07), 0.79(± 0.05), and 0.71(± 0.07) for radiomics, DL and calcium, respectively. Explainability revealed consistent patterns in the most important radiomic features.</p></div><div><h3>Conclusions</h3><p>Our study highlights the potential of novel image analysis techniques in extracting quantitative information beyond calcification in the identification of CAD. Though further work is required, the transition of these novel techniques into clinical practice may eventually facilitate better stroke risk stratification.</p></div>","PeriodicalId":38076,"journal":{"name":"European Journal of Radiology Open","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352047724000492/pdfft?md5=bb89145f8b5e821a8f445782d782898c&pid=1-s2.0-S2352047724000492-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Using machine learning to predict carotid artery symptoms from CT angiography: A radiomics and deep learning approach\",\"authors\":\"Elizabeth P.V. Le ,&nbsp;Mark Y.Z. Wong ,&nbsp;Leonardo Rundo ,&nbsp;Jason M. Tarkin ,&nbsp;Nicholas R. Evans ,&nbsp;Jonathan R. Weir-McCall ,&nbsp;Mohammed M. Chowdhury ,&nbsp;Patrick A. Coughlin ,&nbsp;Holly Pavey ,&nbsp;Fulvio Zaccagna ,&nbsp;Chris Wall ,&nbsp;Rouchelle Sriranjan ,&nbsp;Andrej Corovic ,&nbsp;Yuan Huang ,&nbsp;Elizabeth A. Warburton ,&nbsp;Evis Sala ,&nbsp;Michael Roberts ,&nbsp;Carola-Bibiane Schönlieb ,&nbsp;James H.F. Rudd\",\"doi\":\"10.1016/j.ejro.2024.100594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose</h3><p>To assess radiomics and deep learning (DL) methods in identifying symptomatic Carotid Artery Disease (CAD) from carotid CT angiography (CTA) images. We further compare the performance of these novel methods to the conventional calcium score.</p></div><div><h3>Methods</h3><p>Carotid CT angiography (CTA) images from symptomatic patients (ischaemic stroke/transient ischaemic attack within the last 3 months) and asymptomatic patients were analysed. Carotid arteries were classified into culprit, non-culprit and asymptomatic. The calcium score was assessed using the Agatston method. 93 radiomic features were extracted from regions-of-interest drawn on 14 consecutive CTA slices. For DL, convolutional neural networks (CNNs) with and without transfer learning were trained directly on CTA slices. Predictive performance was assessed over 5-fold cross validated AUC scores. SHAP and GRAD-CAM algorithms were used for explainability.</p></div><div><h3>Results</h3><p>132 carotid arteries were analysed (41 culprit, 41 non-culprit, and 50 asymptomatic). For asymptomatic vs symptomatic arteries, radiomics attained a mean AUC of 0.96(± 0.02), followed by DL 0.86(± 0.06) and then calcium 0.79(± 0.08). For culprit vs non-culprit arteries, radiomics achieved a mean AUC of 0.75(± 0.09), followed by DL 0.67(± 0.10) and then calcium 0.60(± 0.02). For multi-class classification, the mean AUCs were 0.95(± 0.07), 0.79(± 0.05), and 0.71(± 0.07) for radiomics, DL and calcium, respectively. Explainability revealed consistent patterns in the most important radiomic features.</p></div><div><h3>Conclusions</h3><p>Our study highlights the potential of novel image analysis techniques in extracting quantitative information beyond calcification in the identification of CAD. Though further work is required, the transition of these novel techniques into clinical practice may eventually facilitate better stroke risk stratification.</p></div>\",\"PeriodicalId\":38076,\"journal\":{\"name\":\"European Journal of Radiology Open\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352047724000492/pdfft?md5=bb89145f8b5e821a8f445782d782898c&pid=1-s2.0-S2352047724000492-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Radiology Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352047724000492\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Radiology Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352047724000492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

目的评估放射组学和深度学习(DL)方法从颈动脉 CT 血管造影(CTA)图像中识别无症状颈动脉疾病(CAD)的能力。我们进一步比较了这些新方法与传统钙评分的性能。方法 分析了有症状患者(过去 3 个月内缺血性中风/短暂性脑缺血发作)和无症状患者的颈动脉 CT 血管造影 (CTA) 图像。颈动脉被分为罪魁祸首型、非罪魁祸首型和无症状型。采用阿加特斯通方法评估钙化评分。从 14 个连续 CTA 切片上绘制的感兴趣区提取 93 个放射学特征。对于 DL,有无迁移学习的卷积神经网络(CNN)直接在 CTA 切片上进行训练。预测性能通过 5 倍交叉验证的 AUC 分数进行评估。结果 分析了 132 条颈动脉(41 条罪魁祸首动脉、41 条非罪魁祸首动脉和 50 条无症状动脉)。对于无症状动脉与有症状动脉,放射组学的平均 AUC 为 0.96(± 0.02),其次是 DL 0.86(± 0.06),然后是钙 0.79(± 0.08)。对于罪魁祸首与非罪魁祸首动脉,放射组学的平均 AUC 为 0.75(±0.09),其次是 DL 0.67(±0.10),然后是钙 0.60(±0.02)。在多类分类中,放射组学、DL 和钙的平均 AUC 分别为 0.95(± 0.07)、0.79(± 0.05)和 0.71(± 0.07)。我们的研究强调了新型图像分析技术在提取钙化以外的定量信息以识别 CAD 方面的潜力。尽管还需要进一步的工作,但将这些新技术应用于临床实践最终可能会促进更好的中风风险分层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using machine learning to predict carotid artery symptoms from CT angiography: A radiomics and deep learning approach

Purpose

To assess radiomics and deep learning (DL) methods in identifying symptomatic Carotid Artery Disease (CAD) from carotid CT angiography (CTA) images. We further compare the performance of these novel methods to the conventional calcium score.

Methods

Carotid CT angiography (CTA) images from symptomatic patients (ischaemic stroke/transient ischaemic attack within the last 3 months) and asymptomatic patients were analysed. Carotid arteries were classified into culprit, non-culprit and asymptomatic. The calcium score was assessed using the Agatston method. 93 radiomic features were extracted from regions-of-interest drawn on 14 consecutive CTA slices. For DL, convolutional neural networks (CNNs) with and without transfer learning were trained directly on CTA slices. Predictive performance was assessed over 5-fold cross validated AUC scores. SHAP and GRAD-CAM algorithms were used for explainability.

Results

132 carotid arteries were analysed (41 culprit, 41 non-culprit, and 50 asymptomatic). For asymptomatic vs symptomatic arteries, radiomics attained a mean AUC of 0.96(± 0.02), followed by DL 0.86(± 0.06) and then calcium 0.79(± 0.08). For culprit vs non-culprit arteries, radiomics achieved a mean AUC of 0.75(± 0.09), followed by DL 0.67(± 0.10) and then calcium 0.60(± 0.02). For multi-class classification, the mean AUCs were 0.95(± 0.07), 0.79(± 0.05), and 0.71(± 0.07) for radiomics, DL and calcium, respectively. Explainability revealed consistent patterns in the most important radiomic features.

Conclusions

Our study highlights the potential of novel image analysis techniques in extracting quantitative information beyond calcification in the identification of CAD. Though further work is required, the transition of these novel techniques into clinical practice may eventually facilitate better stroke risk stratification.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Journal of Radiology Open
European Journal of Radiology Open Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
4.10
自引率
5.00%
发文量
55
审稿时长
51 days
期刊最新文献
Deep learning model for diagnosis of thyroid nodules with size less than 1 cm: A multicenter, retrospective study MRI-based radiomics machine learning model to differentiate non-clear cell renal cell carcinoma from benign renal tumors Post-deployment performance of a deep learning algorithm for normal and abnormal chest X-ray classification: A study at visa screening centers in the United Arab Emirates Study on the classification of benign and malignant breast lesions using a multi-sequence breast MRI fusion radiomics and deep learning model True cost estimation of common imaging procedures for cost-effectiveness analysis - insights from a Singapore hospital emergency department
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1