聚氧乙烯月桂酸酯系列表面活性剂对 HCFC-141b 水合物形成的影响

IF 5.3 2区 化学 Q2 CHEMISTRY, PHYSICAL Journal of Molecular Liquids Pub Date : 2024-08-26 DOI:10.1016/j.molliq.2024.125840
{"title":"聚氧乙烯月桂酸酯系列表面活性剂对 HCFC-141b 水合物形成的影响","authors":"","doi":"10.1016/j.molliq.2024.125840","DOIUrl":null,"url":null,"abstract":"<div><p>To address the problems of slow crystallization and nucleation in two-phase miscibility in the application of refrigerant hydrates, adding surfactants can be taken as an effective way to promote hydrate formation. Three kinds of polyoxyethylene laurate (LAE) surfactant with different hydrophilic chain lengths (LAE-4, LAE-9 and LAE-24) were selected as accelerators to study their effects on hydrate formation. LAE series surfactants significantly reduce hydrate nucleation induction time. The hydrate induction time of the system with 4.0 wt% LAE-9 is shortest (98 min). The hydrate formation with 4.0 wt% LAE-9 has small randomness and is more stable. Micelles formed by LAE surfactants provide more nucleation sites and accelerate hydrate growth. The hydrate cold storage density is related to the hydrophilic chain length of surfactant. The system with 4.0 wt% LAE-9, which has a suitable hydrophilic chain length, achieves the largest hydrate cold storage density (246.10 kJ·kg<sup>−1</sup>). Hydrate has the fastest growth rate of 4.80 kJ·kg<sup>−1</sup>·min<sup>−1</sup> in the system with 2.0 wt% LAE-24. There is a “memory” effect during hydrate formation and dissociation cycle, eliminating the need for induction time during hydrate re-formation. Hydrate can be re-formed quickly.</p></div>","PeriodicalId":371,"journal":{"name":"Journal of Molecular Liquids","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of polyoxyethylene laurate series surfactants on HCFC-141b hydrate formation\",\"authors\":\"\",\"doi\":\"10.1016/j.molliq.2024.125840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To address the problems of slow crystallization and nucleation in two-phase miscibility in the application of refrigerant hydrates, adding surfactants can be taken as an effective way to promote hydrate formation. Three kinds of polyoxyethylene laurate (LAE) surfactant with different hydrophilic chain lengths (LAE-4, LAE-9 and LAE-24) were selected as accelerators to study their effects on hydrate formation. LAE series surfactants significantly reduce hydrate nucleation induction time. The hydrate induction time of the system with 4.0 wt% LAE-9 is shortest (98 min). The hydrate formation with 4.0 wt% LAE-9 has small randomness and is more stable. Micelles formed by LAE surfactants provide more nucleation sites and accelerate hydrate growth. The hydrate cold storage density is related to the hydrophilic chain length of surfactant. The system with 4.0 wt% LAE-9, which has a suitable hydrophilic chain length, achieves the largest hydrate cold storage density (246.10 kJ·kg<sup>−1</sup>). Hydrate has the fastest growth rate of 4.80 kJ·kg<sup>−1</sup>·min<sup>−1</sup> in the system with 2.0 wt% LAE-24. There is a “memory” effect during hydrate formation and dissociation cycle, eliminating the need for induction time during hydrate re-formation. Hydrate can be re-formed quickly.</p></div>\",\"PeriodicalId\":371,\"journal\":{\"name\":\"Journal of Molecular Liquids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Liquids\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167732224018993\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Liquids","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167732224018993","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

为了解决制冷剂水合物应用中两相混溶结晶缓慢和成核的问题,添加表面活性剂是促进水合物形成的有效方法。本文选择了三种亲水链长不同的聚氧乙烯月桂酸酯(LAE)表面活性剂(LAE-4、LAE-9 和 LAE-24)作为促进剂,研究它们对水合物形成的影响。LAE 系列表面活性剂大大缩短了水合物成核诱导时间。含有 4.0 wt% LAE-9 的体系的水合物诱导时间最短(98 分钟)。4.0 wt% LAE-9 水合物形成的随机性较小,且更加稳定。LAE 表面活性剂形成的胶束提供了更多的成核点,加速了水合物的生长。水合物冷储存密度与表面活性剂的亲水链长有关。含 4.0 wt% LAE-9 的体系具有合适的亲水链长,其水合物冷储存密度最大(246.10 kJ-kg-1)。在含有 2.0 wt% LAE-24 的体系中,水合物的增长速度最快,为 4.80 kJ-kg-1-min-1。在水合物形成和解离循环过程中存在 "记忆 "效应,因此在水合物重新形成过程中无需感应时间。水合物可快速重新形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of polyoxyethylene laurate series surfactants on HCFC-141b hydrate formation

To address the problems of slow crystallization and nucleation in two-phase miscibility in the application of refrigerant hydrates, adding surfactants can be taken as an effective way to promote hydrate formation. Three kinds of polyoxyethylene laurate (LAE) surfactant with different hydrophilic chain lengths (LAE-4, LAE-9 and LAE-24) were selected as accelerators to study their effects on hydrate formation. LAE series surfactants significantly reduce hydrate nucleation induction time. The hydrate induction time of the system with 4.0 wt% LAE-9 is shortest (98 min). The hydrate formation with 4.0 wt% LAE-9 has small randomness and is more stable. Micelles formed by LAE surfactants provide more nucleation sites and accelerate hydrate growth. The hydrate cold storage density is related to the hydrophilic chain length of surfactant. The system with 4.0 wt% LAE-9, which has a suitable hydrophilic chain length, achieves the largest hydrate cold storage density (246.10 kJ·kg−1). Hydrate has the fastest growth rate of 4.80 kJ·kg−1·min−1 in the system with 2.0 wt% LAE-24. There is a “memory” effect during hydrate formation and dissociation cycle, eliminating the need for induction time during hydrate re-formation. Hydrate can be re-formed quickly.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Molecular Liquids
Journal of Molecular Liquids 化学-物理:原子、分子和化学物理
CiteScore
10.30
自引率
16.70%
发文量
2597
审稿时长
78 days
期刊介绍: The journal includes papers in the following areas: – Simple organic liquids and mixtures – Ionic liquids – Surfactant solutions (including micelles and vesicles) and liquid interfaces – Colloidal solutions and nanoparticles – Thermotropic and lyotropic liquid crystals – Ferrofluids – Water, aqueous solutions and other hydrogen-bonded liquids – Lubricants, polymer solutions and melts – Molten metals and salts – Phase transitions and critical phenomena in liquids and confined fluids – Self assembly in complex liquids.– Biomolecules in solution The emphasis is on the molecular (or microscopic) understanding of particular liquids or liquid systems, especially concerning structure, dynamics and intermolecular forces. The experimental techniques used may include: – Conventional spectroscopy (mid-IR and far-IR, Raman, NMR, etc.) – Non-linear optics and time resolved spectroscopy (psec, fsec, asec, ISRS, etc.) – Light scattering (Rayleigh, Brillouin, PCS, etc.) – Dielectric relaxation – X-ray and neutron scattering and diffraction. Experimental studies, computer simulations (MD or MC) and analytical theory will be considered for publication; papers just reporting experimental results that do not contribute to the understanding of the fundamentals of molecular and ionic liquids will not be accepted. Only papers of a non-routine nature and advancing the field will be considered for publication.
期刊最新文献
The adsorption of p-hydroxybenzoic acid on graphene oxide under different pH and in-situ desorption in direct current electric field Cucurbit[6]uril-stabilized copper oxide nanoparticles: Synthesis, potent antimicrobial and in vitro anticancer activity Molecular dynamics study on effects of the synergistic effect of anions and cations on the dissolution of cellulose in ionic liquids Phase behavior and biological activity of lyotropic liquid crystal systems doped with 1,2,3-triazole derivative Doxorubicin removal from an aqueous environment efficiently using bimetallic organic frameworks: Synthesis, characterization, and optimization of adsorption procedure using the Box–Behnken design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1