{"title":"毛状体的缺乏和气孔特性的变化影响拟南芥光合作用的量子效率","authors":"","doi":"10.1016/j.envexpbot.2024.105948","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates how the absence of trichomes and variations in stomatal properties affect the quantum efficiency of photosynthesis in <em>Arabidopsis thaliana</em> during drought stress. We analyzed three genotypes: Col-8 (with trichomes and lower stomatal density), <em>epf1epf2</em> (with higher stomatal density), and <em>tmm-1</em> (lacking trichomes and altered stomatal characteristics) to determine the influence of these anatomical traits on photosynthetic performance. Under well-watered conditions, <em>epf1epf2</em> and <em>tmm-1</em> exhibited higher photosynthetic efficiency (Fv´/Fm´) compared to Col-8. During drought stress, Col-8 maintained stable Fv´/Fm´, while <em>epf1epf2</em> and <em>tmm-1</em> experienced significant reductions. Our findings indicate that the presence of trichomes and higher stomatal density positively impacts photosynthetic efficiency under optimal watering while the presence of trichomes becomes less crucial under drought stress. Efficient adjustment of stomatal density and size under drought conditions plays a more significant role. These insights emphasize the importance of considering anatomical traits in breeding programs to enhance drought resistance and photosynthetic performance in plants.</p></div>","PeriodicalId":11758,"journal":{"name":"Environmental and Experimental Botany","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S009884722400306X/pdfft?md5=bc6a91b9dca9340d473b17b77c0087c1&pid=1-s2.0-S009884722400306X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Lack of trichomes and variation in stomata properties influence the quantum efficiency of photosynthesis in Arabidopsis\",\"authors\":\"\",\"doi\":\"10.1016/j.envexpbot.2024.105948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigates how the absence of trichomes and variations in stomatal properties affect the quantum efficiency of photosynthesis in <em>Arabidopsis thaliana</em> during drought stress. We analyzed three genotypes: Col-8 (with trichomes and lower stomatal density), <em>epf1epf2</em> (with higher stomatal density), and <em>tmm-1</em> (lacking trichomes and altered stomatal characteristics) to determine the influence of these anatomical traits on photosynthetic performance. Under well-watered conditions, <em>epf1epf2</em> and <em>tmm-1</em> exhibited higher photosynthetic efficiency (Fv´/Fm´) compared to Col-8. During drought stress, Col-8 maintained stable Fv´/Fm´, while <em>epf1epf2</em> and <em>tmm-1</em> experienced significant reductions. Our findings indicate that the presence of trichomes and higher stomatal density positively impacts photosynthetic efficiency under optimal watering while the presence of trichomes becomes less crucial under drought stress. Efficient adjustment of stomatal density and size under drought conditions plays a more significant role. These insights emphasize the importance of considering anatomical traits in breeding programs to enhance drought resistance and photosynthetic performance in plants.</p></div>\",\"PeriodicalId\":11758,\"journal\":{\"name\":\"Environmental and Experimental Botany\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S009884722400306X/pdfft?md5=bc6a91b9dca9340d473b17b77c0087c1&pid=1-s2.0-S009884722400306X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental and Experimental Botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S009884722400306X\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009884722400306X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Lack of trichomes and variation in stomata properties influence the quantum efficiency of photosynthesis in Arabidopsis
This study investigates how the absence of trichomes and variations in stomatal properties affect the quantum efficiency of photosynthesis in Arabidopsis thaliana during drought stress. We analyzed three genotypes: Col-8 (with trichomes and lower stomatal density), epf1epf2 (with higher stomatal density), and tmm-1 (lacking trichomes and altered stomatal characteristics) to determine the influence of these anatomical traits on photosynthetic performance. Under well-watered conditions, epf1epf2 and tmm-1 exhibited higher photosynthetic efficiency (Fv´/Fm´) compared to Col-8. During drought stress, Col-8 maintained stable Fv´/Fm´, while epf1epf2 and tmm-1 experienced significant reductions. Our findings indicate that the presence of trichomes and higher stomatal density positively impacts photosynthetic efficiency under optimal watering while the presence of trichomes becomes less crucial under drought stress. Efficient adjustment of stomatal density and size under drought conditions plays a more significant role. These insights emphasize the importance of considering anatomical traits in breeding programs to enhance drought resistance and photosynthetic performance in plants.
期刊介绍:
Environmental and Experimental Botany (EEB) publishes research papers on the physical, chemical, biological, molecular mechanisms and processes involved in the responses of plants to their environment.
In addition to research papers, the journal includes review articles. Submission is in agreement with the Editors-in-Chief.
The Journal also publishes special issues which are built by invited guest editors and are related to the main themes of EEB.
The areas covered by the Journal include:
(1) Responses of plants to heavy metals and pollutants
(2) Plant/water interactions (salinity, drought, flooding)
(3) Responses of plants to radiations ranging from UV-B to infrared
(4) Plant/atmosphere relations (ozone, CO2 , temperature)
(5) Global change impacts on plant ecophysiology
(6) Biotic interactions involving environmental factors.