多孔介质中具有活化能陀螺仪微生物的 Carreau 纳米流体动力学:太阳能应用

Q1 Chemical Engineering International Journal of Thermofluids Pub Date : 2024-08-26 DOI:10.1016/j.ijft.2024.100823
Varatharaj K. , Tamizharasi R. , Vajravelu K.
{"title":"多孔介质中具有活化能陀螺仪微生物的 Carreau 纳米流体动力学:太阳能应用","authors":"Varatharaj K. ,&nbsp;Tamizharasi R. ,&nbsp;Vajravelu K.","doi":"10.1016/j.ijft.2024.100823","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the magnetohydrodynamic (MHD) flow of Carreau nanofluid through a porous medium with motile microorganisms, focusing on various geometries under shear-thinning and shear-thickening conditions. The aim is to elucidate how factors such as activation energy, Schmidt number, Peclet number, bioconvection, Brownian motion, thermophoresis, and heat generation influence flow dynamics. Using similarity transformations, we nondimensionalize the governing equations and solve them numerically with the Runge–Kutta method and a shooting technique in MATLAB. Our findings indicate that variations in Carreau, magnetic, and suction parameters notably impact velocity, temperature, concentration, diffusion, wall friction, and heat transfer, generally resulting in reduced values. Specifically, the flat plate geometry exhibits lower skin friction, heat transfer, and mass transfer rates, as well as decreased gyrotactic microorganism effects. Increased activation energy enhances concentration fields, signaling slower chemical reactions, while higher Peclet numbers and bioconvection inversely affect flow properties. Additionally, reduced Schmidt numbers lead to lower microorganism concentrations. These results provide valuable insights into the complex interactions between fluid dynamics and microorganism behavior, with implications for optimizing processes in biotechnology and environmental management.</p></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"24 ","pages":"Article 100823"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666202724002647/pdfft?md5=c0f4dd891fca95209f427c5741857f4a&pid=1-s2.0-S2666202724002647-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Carreau nanofluid dynamics with activation energy gyrotactic microorganisms in a porous medium: Application to solar energy\",\"authors\":\"Varatharaj K. ,&nbsp;Tamizharasi R. ,&nbsp;Vajravelu K.\",\"doi\":\"10.1016/j.ijft.2024.100823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigates the magnetohydrodynamic (MHD) flow of Carreau nanofluid through a porous medium with motile microorganisms, focusing on various geometries under shear-thinning and shear-thickening conditions. The aim is to elucidate how factors such as activation energy, Schmidt number, Peclet number, bioconvection, Brownian motion, thermophoresis, and heat generation influence flow dynamics. Using similarity transformations, we nondimensionalize the governing equations and solve them numerically with the Runge–Kutta method and a shooting technique in MATLAB. Our findings indicate that variations in Carreau, magnetic, and suction parameters notably impact velocity, temperature, concentration, diffusion, wall friction, and heat transfer, generally resulting in reduced values. Specifically, the flat plate geometry exhibits lower skin friction, heat transfer, and mass transfer rates, as well as decreased gyrotactic microorganism effects. Increased activation energy enhances concentration fields, signaling slower chemical reactions, while higher Peclet numbers and bioconvection inversely affect flow properties. Additionally, reduced Schmidt numbers lead to lower microorganism concentrations. These results provide valuable insights into the complex interactions between fluid dynamics and microorganism behavior, with implications for optimizing processes in biotechnology and environmental management.</p></div>\",\"PeriodicalId\":36341,\"journal\":{\"name\":\"International Journal of Thermofluids\",\"volume\":\"24 \",\"pages\":\"Article 100823\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666202724002647/pdfft?md5=c0f4dd891fca95209f427c5741857f4a&pid=1-s2.0-S2666202724002647-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermofluids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666202724002647\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666202724002647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了 Carreau 纳米流体在多孔介质中的磁流体动力学(MHD)流动,该介质中存在能动微生物,研究重点是剪切稀化和剪切增厚条件下的各种几何形状。目的是阐明活化能、施密特数、佩克莱特数、生物对流、布朗运动、热泳和发热等因素如何影响流动动力学。利用相似性变换,我们对控制方程进行了非尺寸化,并在 MATLAB 中使用 Runge-Kutta 方法和射击技术对其进行了数值求解。我们的研究结果表明,Carreau、磁性和吸力参数的变化会对速度、温度、浓度、扩散、壁面摩擦和传热产生显著影响,一般会导致数值降低。具体来说,平板几何形状显示出较低的表皮摩擦、传热和传质速率,以及较低的回旋微生物效应。活化能的增加会增强浓度场,从而减缓化学反应,而较高的佩克莱特数和生物对流则会对流动特性产生反向影响。此外,施密特数降低会导致微生物浓度降低。这些结果为了解流体动力学与微生物行为之间复杂的相互作用提供了宝贵的见解,对优化生物技术和环境管理过程具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Carreau nanofluid dynamics with activation energy gyrotactic microorganisms in a porous medium: Application to solar energy

This study investigates the magnetohydrodynamic (MHD) flow of Carreau nanofluid through a porous medium with motile microorganisms, focusing on various geometries under shear-thinning and shear-thickening conditions. The aim is to elucidate how factors such as activation energy, Schmidt number, Peclet number, bioconvection, Brownian motion, thermophoresis, and heat generation influence flow dynamics. Using similarity transformations, we nondimensionalize the governing equations and solve them numerically with the Runge–Kutta method and a shooting technique in MATLAB. Our findings indicate that variations in Carreau, magnetic, and suction parameters notably impact velocity, temperature, concentration, diffusion, wall friction, and heat transfer, generally resulting in reduced values. Specifically, the flat plate geometry exhibits lower skin friction, heat transfer, and mass transfer rates, as well as decreased gyrotactic microorganism effects. Increased activation energy enhances concentration fields, signaling slower chemical reactions, while higher Peclet numbers and bioconvection inversely affect flow properties. Additionally, reduced Schmidt numbers lead to lower microorganism concentrations. These results provide valuable insights into the complex interactions between fluid dynamics and microorganism behavior, with implications for optimizing processes in biotechnology and environmental management.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Thermofluids
International Journal of Thermofluids Engineering-Mechanical Engineering
CiteScore
10.10
自引率
0.00%
发文量
111
审稿时长
66 days
期刊最新文献
Compressibility effects in microchannel flows between two-parallel plates at low reynolds and mach numbers: Numerical analysis Renewable energy as an auxiliary to heat pumps: Performance evaluation of hybrid solar-geothermal-systems Effect of external force on the dispersion of particles and permeability of substances via carbon nanotubes in reverse electrodialysis using molecular dynamics simulation Effect of pin fins on heat transfer during condensation in minichannel heat exchanger Numerical investigation of the flow characteristics inside a supersonic vapor ejector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1