利用发音表征学习进行音视频深度伪造检测

IF 4.3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Computer Vision and Image Understanding Pub Date : 2024-08-22 DOI:10.1016/j.cviu.2024.104133
Yujia Wang, Hua Huang
{"title":"利用发音表征学习进行音视频深度伪造检测","authors":"Yujia Wang,&nbsp;Hua Huang","doi":"10.1016/j.cviu.2024.104133","DOIUrl":null,"url":null,"abstract":"<div><p>Advancements in generative artificial intelligence have made it easier to manipulate auditory and visual elements, highlighting the critical need for robust audio–visual deepfake detection methods. In this paper, we propose an articulatory representation-based audio–visual deepfake detection approach, <em>ART-AVDF</em>. First, we devise an audio encoder to extract articulatory features that capture the physical significance of articulation movement, integrating with a lip encoder to explore audio–visual articulatory correspondences in a self-supervised learning manner. Then, we design a multimodal joint fusion module to further explore inherent audio–visual consistency using the articulatory embeddings. Extensive experiments on the DFDC, FakeAVCeleb, and DefakeAVMiT datasets demonstrate that <em>ART-AVDF</em> obtains a significant performance improvement compared to many deepfake detection models.</p></div>","PeriodicalId":50633,"journal":{"name":"Computer Vision and Image Understanding","volume":"248 ","pages":"Article 104133"},"PeriodicalIF":4.3000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Audio–visual deepfake detection using articulatory representation learning\",\"authors\":\"Yujia Wang,&nbsp;Hua Huang\",\"doi\":\"10.1016/j.cviu.2024.104133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Advancements in generative artificial intelligence have made it easier to manipulate auditory and visual elements, highlighting the critical need for robust audio–visual deepfake detection methods. In this paper, we propose an articulatory representation-based audio–visual deepfake detection approach, <em>ART-AVDF</em>. First, we devise an audio encoder to extract articulatory features that capture the physical significance of articulation movement, integrating with a lip encoder to explore audio–visual articulatory correspondences in a self-supervised learning manner. Then, we design a multimodal joint fusion module to further explore inherent audio–visual consistency using the articulatory embeddings. Extensive experiments on the DFDC, FakeAVCeleb, and DefakeAVMiT datasets demonstrate that <em>ART-AVDF</em> obtains a significant performance improvement compared to many deepfake detection models.</p></div>\",\"PeriodicalId\":50633,\"journal\":{\"name\":\"Computer Vision and Image Understanding\",\"volume\":\"248 \",\"pages\":\"Article 104133\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Vision and Image Understanding\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1077314224002145\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision and Image Understanding","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077314224002145","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

人工智能生成技术的进步使操作听觉和视觉元素变得更加容易,这就凸显了对稳健的视听深度防伪检测方法的迫切需要。在本文中,我们提出了一种基于发音表征的视听深度防伪检测方法 ART-AVDF。首先,我们设计了一个音频编码器来提取发音特征,捕捉发音运动的物理意义,并与唇音编码器集成,以自我监督学习的方式探索视听发音对应关系。然后,我们设计了一个多模态联合融合模块,利用发音嵌入进一步探索固有的视听一致性。在 DFDC、FakeAVCeleb 和 DefakeAVMiT 数据集上进行的大量实验表明,与许多深度防伪检测模型相比,ART-AVDF 的性能有了显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Audio–visual deepfake detection using articulatory representation learning

Advancements in generative artificial intelligence have made it easier to manipulate auditory and visual elements, highlighting the critical need for robust audio–visual deepfake detection methods. In this paper, we propose an articulatory representation-based audio–visual deepfake detection approach, ART-AVDF. First, we devise an audio encoder to extract articulatory features that capture the physical significance of articulation movement, integrating with a lip encoder to explore audio–visual articulatory correspondences in a self-supervised learning manner. Then, we design a multimodal joint fusion module to further explore inherent audio–visual consistency using the articulatory embeddings. Extensive experiments on the DFDC, FakeAVCeleb, and DefakeAVMiT datasets demonstrate that ART-AVDF obtains a significant performance improvement compared to many deepfake detection models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Vision and Image Understanding
Computer Vision and Image Understanding 工程技术-工程:电子与电气
CiteScore
7.80
自引率
4.40%
发文量
112
审稿时长
79 days
期刊介绍: The central focus of this journal is the computer analysis of pictorial information. Computer Vision and Image Understanding publishes papers covering all aspects of image analysis from the low-level, iconic processes of early vision to the high-level, symbolic processes of recognition and interpretation. A wide range of topics in the image understanding area is covered, including papers offering insights that differ from predominant views. Research Areas Include: • Theory • Early vision • Data structures and representations • Shape • Range • Motion • Matching and recognition • Architecture and languages • Vision systems
期刊最新文献
Scene-cGAN: A GAN for underwater restoration and scene depth estimation 2S-SGCN: A two-stage stratified graph convolutional network model for facial landmark detection on 3D data Dual stage semantic information based generative adversarial network for image super-resolution Enhancing scene text detectors with realistic text image synthesis using diffusion models Unsupervised co-generation of foreground–background segmentation from Text-to-Image synthesis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1