Xian-long Meng, Xin Xu, Ya-song Zhu, Cun-liang Liu
{"title":"石英灯照射下涡轮叶片热辐射分布的逆问题","authors":"Xian-long Meng, Xin Xu, Ya-song Zhu, Cun-liang Liu","doi":"10.1016/j.infrared.2024.105523","DOIUrl":null,"url":null,"abstract":"<div><p>Due to the strong time-varying characteristics and complex geometry of aerospace components, rapid changes in the distribution of radiative heat flux on the test surface are often required during non-uniform aerodynamic heating tests. However, it takes time to adjust the geometric parameters of the lamp array, which cannot meet the requirement for rapidly changing radiative heat flux distribution. To address this issue, a new method for calculating radiant heat flux and a fast linear analysis method of quartz lamp power are proposed which can calculate radiant heat flux distribution of complex surface and meet the need of timeliness and rapidity in radiant heat flux distribution, making it more suitable for engineering applications. Through numerical verification under single lamp and quartz lamp array, the maximum difference between the theoretical analysis method and the Monte Carlo method is less than 2.25% under single lamp, and less than 5% under quartz lamp array. Finally, turbine blade model and plane model are taken as research objects to verify the feasibility and reliability of the fast linear analysis method of quartz lamp power. The results show that the relative average error of the calculated quartz lamp power is 5.86% and 14.83%, respectively, compared with the actual power. This provides a reference and basis for the rapid simulation design of thermal radiation environment during the experiment.</p></div>","PeriodicalId":13549,"journal":{"name":"Infrared Physics & Technology","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inverse problem for thermal radiation distribution on turbine blade under quartz lamp irradiation\",\"authors\":\"Xian-long Meng, Xin Xu, Ya-song Zhu, Cun-liang Liu\",\"doi\":\"10.1016/j.infrared.2024.105523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Due to the strong time-varying characteristics and complex geometry of aerospace components, rapid changes in the distribution of radiative heat flux on the test surface are often required during non-uniform aerodynamic heating tests. However, it takes time to adjust the geometric parameters of the lamp array, which cannot meet the requirement for rapidly changing radiative heat flux distribution. To address this issue, a new method for calculating radiant heat flux and a fast linear analysis method of quartz lamp power are proposed which can calculate radiant heat flux distribution of complex surface and meet the need of timeliness and rapidity in radiant heat flux distribution, making it more suitable for engineering applications. Through numerical verification under single lamp and quartz lamp array, the maximum difference between the theoretical analysis method and the Monte Carlo method is less than 2.25% under single lamp, and less than 5% under quartz lamp array. Finally, turbine blade model and plane model are taken as research objects to verify the feasibility and reliability of the fast linear analysis method of quartz lamp power. The results show that the relative average error of the calculated quartz lamp power is 5.86% and 14.83%, respectively, compared with the actual power. This provides a reference and basis for the rapid simulation design of thermal radiation environment during the experiment.</p></div>\",\"PeriodicalId\":13549,\"journal\":{\"name\":\"Infrared Physics & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infrared Physics & Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350449524004079\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infrared Physics & Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350449524004079","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Inverse problem for thermal radiation distribution on turbine blade under quartz lamp irradiation
Due to the strong time-varying characteristics and complex geometry of aerospace components, rapid changes in the distribution of radiative heat flux on the test surface are often required during non-uniform aerodynamic heating tests. However, it takes time to adjust the geometric parameters of the lamp array, which cannot meet the requirement for rapidly changing radiative heat flux distribution. To address this issue, a new method for calculating radiant heat flux and a fast linear analysis method of quartz lamp power are proposed which can calculate radiant heat flux distribution of complex surface and meet the need of timeliness and rapidity in radiant heat flux distribution, making it more suitable for engineering applications. Through numerical verification under single lamp and quartz lamp array, the maximum difference between the theoretical analysis method and the Monte Carlo method is less than 2.25% under single lamp, and less than 5% under quartz lamp array. Finally, turbine blade model and plane model are taken as research objects to verify the feasibility and reliability of the fast linear analysis method of quartz lamp power. The results show that the relative average error of the calculated quartz lamp power is 5.86% and 14.83%, respectively, compared with the actual power. This provides a reference and basis for the rapid simulation design of thermal radiation environment during the experiment.
期刊介绍:
The Journal covers the entire field of infrared physics and technology: theory, experiment, application, devices and instrumentation. Infrared'' is defined as covering the near, mid and far infrared (terahertz) regions from 0.75um (750nm) to 1mm (300GHz.) Submissions in the 300GHz to 100GHz region may be accepted at the editors discretion if their content is relevant to shorter wavelengths. Submissions must be primarily concerned with and directly relevant to this spectral region.
Its core topics can be summarized as the generation, propagation and detection, of infrared radiation; the associated optics, materials and devices; and its use in all fields of science, industry, engineering and medicine.
Infrared techniques occur in many different fields, notably spectroscopy and interferometry; material characterization and processing; atmospheric physics, astronomy and space research. Scientific aspects include lasers, quantum optics, quantum electronics, image processing and semiconductor physics. Some important applications are medical diagnostics and treatment, industrial inspection and environmental monitoring.