用于高性能锂硫电池的 S 掺杂介孔石墨烯改性隔膜

Xinlong Ma , Chenggen Xu , Yin Yang , Dong Sun , Kai Zhao , Changbo Lu , Peng Jin , Yiting Chong , Sirawit Pruksawan , Zhihua Xiao , Fuke Wang
{"title":"用于高性能锂硫电池的 S 掺杂介孔石墨烯改性隔膜","authors":"Xinlong Ma ,&nbsp;Chenggen Xu ,&nbsp;Yin Yang ,&nbsp;Dong Sun ,&nbsp;Kai Zhao ,&nbsp;Changbo Lu ,&nbsp;Peng Jin ,&nbsp;Yiting Chong ,&nbsp;Sirawit Pruksawan ,&nbsp;Zhihua Xiao ,&nbsp;Fuke Wang","doi":"10.1016/j.matre.2024.100279","DOIUrl":null,"url":null,"abstract":"<div><p>Due to their low cost, environmental friendliness and high energy density, the lithium-sulfur batteries (LSB) have been regarded as a promising alternative for the next generation of rechargeable battery systems. However, the practical application of LSB is seriously hampered by its short cycle life and high self-charge owing to the apparent shuttle effect of soluble lithium polysulfides. Using MgSO<sub>4</sub>@MgO composite as both template and dopant, template-guided S-doped mesoporous graphene (SMG) is prepared via the fluidized-bed chemical vapor deposition method. As the polypropylene (PP) modifier, SMG with high specific surface area, abundant mesoporous structures and moderate S doping content offers a wealth of physical and chemical adsorptive sites and reduced interfacial contact resistance, thereby restraining the serious shuttle effects of lithium polysulfides. Consequently, the LSB configured with mesoporous graphene (MG) as S host material and SMG as a separator modifier exhibits an enhanced electrochemical performance with a high average capacity of 955.64 mA h g<sup>−1</sup> at 1C and a small capacity decay rate of 0.109% per cycle. Additionally, the density functional theory (DFT) calculation models have been rationally constructed and demonstrated that the doped S atoms in SMG possess higher binding energy to lithium polysulfides than that in MG, indicating that the SMG/PP separator can effectively capture soluble lithium polysulfides via chemical binding forces. This work would provide valuable insight into developing a versatile carbon-based separator modifier for LSB.</p></div>","PeriodicalId":61638,"journal":{"name":"材料导报:能源(英文)","volume":"4 3","pages":"Article 100279"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666935824000491/pdfft?md5=ef2920c58bd0482bc23243ecb92475fc&pid=1-s2.0-S2666935824000491-main.pdf","citationCount":"0","resultStr":"{\"title\":\"S-doped mesoporous graphene modified separator for high performance lithium-sulfur batteries\",\"authors\":\"Xinlong Ma ,&nbsp;Chenggen Xu ,&nbsp;Yin Yang ,&nbsp;Dong Sun ,&nbsp;Kai Zhao ,&nbsp;Changbo Lu ,&nbsp;Peng Jin ,&nbsp;Yiting Chong ,&nbsp;Sirawit Pruksawan ,&nbsp;Zhihua Xiao ,&nbsp;Fuke Wang\",\"doi\":\"10.1016/j.matre.2024.100279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Due to their low cost, environmental friendliness and high energy density, the lithium-sulfur batteries (LSB) have been regarded as a promising alternative for the next generation of rechargeable battery systems. However, the practical application of LSB is seriously hampered by its short cycle life and high self-charge owing to the apparent shuttle effect of soluble lithium polysulfides. Using MgSO<sub>4</sub>@MgO composite as both template and dopant, template-guided S-doped mesoporous graphene (SMG) is prepared via the fluidized-bed chemical vapor deposition method. As the polypropylene (PP) modifier, SMG with high specific surface area, abundant mesoporous structures and moderate S doping content offers a wealth of physical and chemical adsorptive sites and reduced interfacial contact resistance, thereby restraining the serious shuttle effects of lithium polysulfides. Consequently, the LSB configured with mesoporous graphene (MG) as S host material and SMG as a separator modifier exhibits an enhanced electrochemical performance with a high average capacity of 955.64 mA h g<sup>−1</sup> at 1C and a small capacity decay rate of 0.109% per cycle. Additionally, the density functional theory (DFT) calculation models have been rationally constructed and demonstrated that the doped S atoms in SMG possess higher binding energy to lithium polysulfides than that in MG, indicating that the SMG/PP separator can effectively capture soluble lithium polysulfides via chemical binding forces. This work would provide valuable insight into developing a versatile carbon-based separator modifier for LSB.</p></div>\",\"PeriodicalId\":61638,\"journal\":{\"name\":\"材料导报:能源(英文)\",\"volume\":\"4 3\",\"pages\":\"Article 100279\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666935824000491/pdfft?md5=ef2920c58bd0482bc23243ecb92475fc&pid=1-s2.0-S2666935824000491-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"材料导报:能源(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666935824000491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"材料导报:能源(英文)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666935824000491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

锂硫电池(LSB)具有成本低、环保和能量密度高等优点,被视为下一代充电电池系统的理想替代品。然而,由于可溶性锂多硫化物的明显穿梭效应,锂硫电池的循环寿命短和高自充电率严重阻碍了其实际应用。利用 MgSO4@MgO 复合材料作为模板和掺杂剂,通过流化床化学气相沉积法制备了模板引导的 S 掺杂介孔石墨烯(SMG)。作为聚丙烯(PP)的改性剂,SMG 具有高比表面积、丰富的介孔结构和适度的 S 掺杂含量,可提供丰富的物理和化学吸附位点并降低界面接触电阻,从而抑制多硫化锂的严重穿梭效应。因此,以介孔石墨烯(MG)为 S 主材料、SMG 为分离改性剂的 LSB 具有更高的电化学性能,在 1C 时的平均容量高达 955.64 mA h g-1,且每周期的容量衰减率仅为 0.109%。此外,合理构建的密度泛函理论(DFT)计算模型表明,SMG 中掺杂的 S 原子与多硫化锂的结合能高于 MG,表明 SMG/PP 分离剂可通过化学结合力有效捕获可溶性多硫化锂。这项工作将为开发用于 LSB 的多功能碳基分离改性剂提供宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
S-doped mesoporous graphene modified separator for high performance lithium-sulfur batteries

Due to their low cost, environmental friendliness and high energy density, the lithium-sulfur batteries (LSB) have been regarded as a promising alternative for the next generation of rechargeable battery systems. However, the practical application of LSB is seriously hampered by its short cycle life and high self-charge owing to the apparent shuttle effect of soluble lithium polysulfides. Using MgSO4@MgO composite as both template and dopant, template-guided S-doped mesoporous graphene (SMG) is prepared via the fluidized-bed chemical vapor deposition method. As the polypropylene (PP) modifier, SMG with high specific surface area, abundant mesoporous structures and moderate S doping content offers a wealth of physical and chemical adsorptive sites and reduced interfacial contact resistance, thereby restraining the serious shuttle effects of lithium polysulfides. Consequently, the LSB configured with mesoporous graphene (MG) as S host material and SMG as a separator modifier exhibits an enhanced electrochemical performance with a high average capacity of 955.64 mA h g−1 at 1C and a small capacity decay rate of 0.109% per cycle. Additionally, the density functional theory (DFT) calculation models have been rationally constructed and demonstrated that the doped S atoms in SMG possess higher binding energy to lithium polysulfides than that in MG, indicating that the SMG/PP separator can effectively capture soluble lithium polysulfides via chemical binding forces. This work would provide valuable insight into developing a versatile carbon-based separator modifier for LSB.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
材料导报:能源(英文)
材料导报:能源(英文) Renewable Energy, Sustainability and the Environment, Nanotechnology
CiteScore
13.00
自引率
0.00%
发文量
0
审稿时长
50 days
期刊最新文献
Outside Front Cover Contents A triboelectric nanogenerator based on a spiral rotating shaft for efficient marine energy harvesting of the hydrostatic pressure differential Synthesis of nanostructured zinc oxide and its composite with carbon dots for DSSCs applications using flexible electrode Advancements in biomass gasification research utilizing iron-based oxygen carriers in chemical looping: A review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1