{"title":"半完全区间图","authors":"Robert Scheffler","doi":"10.1016/j.dam.2024.08.016","DOIUrl":null,"url":null,"abstract":"<div><p>We present a new subclass of interval graphs that generalizes connected proper interval graphs. These graphs are characterized by vertex orderings called connected perfect elimination orderings (PEO), i.e., PEOs where consecutive vertices are adjacent. Alternatively, these graphs can also be characterized by special interval models and clique orderings. We present a linear-time recognition algorithm that uses PQ-trees. Furthermore, we study the behavior of multi-sweep graph searches on this graph class. This study also shows that Corneil’s well-known LBFS-recognition algorithm for proper interval graphs can be generalized to a large family of graph searches. Finally, we show that a strong result on the existence of Hamiltonian paths and cycles in proper interval graphs can be generalized to semi-proper interval graphs.</p></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"360 ","pages":"Pages 22-41"},"PeriodicalIF":1.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0166218X24003743/pdfft?md5=6110dc7ab7e08b99475c2042354b19c5&pid=1-s2.0-S0166218X24003743-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Semi-proper interval graphs\",\"authors\":\"Robert Scheffler\",\"doi\":\"10.1016/j.dam.2024.08.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present a new subclass of interval graphs that generalizes connected proper interval graphs. These graphs are characterized by vertex orderings called connected perfect elimination orderings (PEO), i.e., PEOs where consecutive vertices are adjacent. Alternatively, these graphs can also be characterized by special interval models and clique orderings. We present a linear-time recognition algorithm that uses PQ-trees. Furthermore, we study the behavior of multi-sweep graph searches on this graph class. This study also shows that Corneil’s well-known LBFS-recognition algorithm for proper interval graphs can be generalized to a large family of graph searches. Finally, we show that a strong result on the existence of Hamiltonian paths and cycles in proper interval graphs can be generalized to semi-proper interval graphs.</p></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"360 \",\"pages\":\"Pages 22-41\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0166218X24003743/pdfft?md5=6110dc7ab7e08b99475c2042354b19c5&pid=1-s2.0-S0166218X24003743-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X24003743\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X24003743","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
We present a new subclass of interval graphs that generalizes connected proper interval graphs. These graphs are characterized by vertex orderings called connected perfect elimination orderings (PEO), i.e., PEOs where consecutive vertices are adjacent. Alternatively, these graphs can also be characterized by special interval models and clique orderings. We present a linear-time recognition algorithm that uses PQ-trees. Furthermore, we study the behavior of multi-sweep graph searches on this graph class. This study also shows that Corneil’s well-known LBFS-recognition algorithm for proper interval graphs can be generalized to a large family of graph searches. Finally, we show that a strong result on the existence of Hamiltonian paths and cycles in proper interval graphs can be generalized to semi-proper interval graphs.
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.