关于使用累积生成函数推断时间序列

IF 1.5 3区 数学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computational Statistics & Data Analysis Pub Date : 2024-08-28 DOI:10.1016/j.csda.2024.108044
A. Moor, D. La Vecchia, E. Ronchetti
{"title":"关于使用累积生成函数推断时间序列","authors":"A. Moor,&nbsp;D. La Vecchia,&nbsp;E. Ronchetti","doi":"10.1016/j.csda.2024.108044","DOIUrl":null,"url":null,"abstract":"<div><p>Innovative inference procedures for analyzing time series data are introduced. The methodology covers density approximation and composite hypothesis testing based on Whittle's estimator, which is a widely applied M-estimator in the frequency domain. Its core feature involves the cumulant generating function of Whittle's score obtained using an approximated distribution of the periodogram ordinates. A testing algorithm not only significantly expands the applicability of the state-of-the-art saddlepoint test, but also maintains the numerical accuracy of the saddlepoint approximation. Connections are made with three other prevalent frequency domain techniques: the bootstrap, empirical likelihood, and exponential tilting. Numerical examples using both simulated and real data illustrate the advantages and accuracy of the saddlepoint methods.</p></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"201 ","pages":"Article 108044"},"PeriodicalIF":1.5000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167947324001282/pdfft?md5=9b20083653468ba252743f2a96727926&pid=1-s2.0-S0167947324001282-main.pdf","citationCount":"0","resultStr":"{\"title\":\"On the use of the cumulant generating function for inference on time series\",\"authors\":\"A. Moor,&nbsp;D. La Vecchia,&nbsp;E. Ronchetti\",\"doi\":\"10.1016/j.csda.2024.108044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Innovative inference procedures for analyzing time series data are introduced. The methodology covers density approximation and composite hypothesis testing based on Whittle's estimator, which is a widely applied M-estimator in the frequency domain. Its core feature involves the cumulant generating function of Whittle's score obtained using an approximated distribution of the periodogram ordinates. A testing algorithm not only significantly expands the applicability of the state-of-the-art saddlepoint test, but also maintains the numerical accuracy of the saddlepoint approximation. Connections are made with three other prevalent frequency domain techniques: the bootstrap, empirical likelihood, and exponential tilting. Numerical examples using both simulated and real data illustrate the advantages and accuracy of the saddlepoint methods.</p></div>\",\"PeriodicalId\":55225,\"journal\":{\"name\":\"Computational Statistics & Data Analysis\",\"volume\":\"201 \",\"pages\":\"Article 108044\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167947324001282/pdfft?md5=9b20083653468ba252743f2a96727926&pid=1-s2.0-S0167947324001282-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Statistics & Data Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167947324001282\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947324001282","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

介绍了用于分析时间序列数据的创新推理程序。该方法涵盖了基于惠特尔估计器的密度近似和复合假设检验,惠特尔估计器是频域中广泛应用的 M 估计器。其核心特征是利用周期图序数的近似分布获得惠特尔评分的累积生成函数。测试算法不仅大大扩展了最先进的鞍点测试的适用性,而且保持了鞍点近似的数值精度。与其他三种流行的频域技术:自举法、经验似然法和指数倾斜法建立了联系。使用模拟和真实数据的数值示例说明了鞍点方法的优势和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the use of the cumulant generating function for inference on time series

Innovative inference procedures for analyzing time series data are introduced. The methodology covers density approximation and composite hypothesis testing based on Whittle's estimator, which is a widely applied M-estimator in the frequency domain. Its core feature involves the cumulant generating function of Whittle's score obtained using an approximated distribution of the periodogram ordinates. A testing algorithm not only significantly expands the applicability of the state-of-the-art saddlepoint test, but also maintains the numerical accuracy of the saddlepoint approximation. Connections are made with three other prevalent frequency domain techniques: the bootstrap, empirical likelihood, and exponential tilting. Numerical examples using both simulated and real data illustrate the advantages and accuracy of the saddlepoint methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Statistics & Data Analysis
Computational Statistics & Data Analysis 数学-计算机:跨学科应用
CiteScore
3.70
自引率
5.60%
发文量
167
审稿时长
60 days
期刊介绍: Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas: I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article. II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures. [...] III) Special Applications - [...] IV) Annals of Statistical Data Science [...]
期刊最新文献
Editorial Board Efficient Bayesian functional principal component analysis of irregularly-observed multivariate curves Statistical modeling of Dengue transmission dynamics with environmental factors Analysis of order-of-addition experiments A goodness-of-fit test for functional time series with applications to Ornstein-Uhlenbeck processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1