鱼骨主动凸面变形气垫的二维静态和动态气动弹性建模与分析

IF 3.4 2区 工程技术 Q1 ENGINEERING, MECHANICAL Journal of Fluids and Structures Pub Date : 2024-08-31 DOI:10.1016/j.jfluidstructs.2024.104171
{"title":"鱼骨主动凸面变形气垫的二维静态和动态气动弹性建模与分析","authors":"","doi":"10.1016/j.jfluidstructs.2024.104171","DOIUrl":null,"url":null,"abstract":"<div><p>As a continuous and smooth morphing concept for aerofoils, the Fish Bone Active Camber (FishBAC) concept has demonstrated significant aerodynamic efficiency improvements over traditional hinged flaps. In this paper, to investigate the static and dynamic aeroelasticity of FishBAC aerofoils, an unsteady two dimensional coupled fluid-structure interaction model is developed, which includes the structural response of the FishBAC spine, skin, stringers, tendons and actuator, coupled to an unsteady aerodynamics model. The structural dynamic model is Timoshenko beam-theory-based, while the aerodynamic model is based on Peters’ unsteady model. The static and dynamic aeroelasticity is studied after the model is validated. Results show that the increase in pulley rotational angle reduces the zero-lift angle of attack, while keeping the slope between the lift coefficient and angle of attack the same. A shorter morphing region closer to the trailing edge is beneficial for generating larger lift coefficient with the same tendon moment and angle of attack. Flutter occurs with the increase of the air speed. When the morphing end position is fixed at 0.9 chord, increasing the morphing length reduces the critical flutter speed significantly, with the second bending mode tending to drive instability. With the same morphing length, moving the morphing region closer to the leading edge increases the critical flutter speed, and the unstable mode changes from the second mode into the first mode.</p></div>","PeriodicalId":54834,"journal":{"name":"Journal of Fluids and Structures","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0889974624001063/pdfft?md5=090d22a260c06cbbeb38cb166a7d3c09&pid=1-s2.0-S0889974624001063-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Modelling and analysis of two-dimensional static and dynamic aeroelasticity of Fish Bone Active Camber morphing aerofoils\",\"authors\":\"\",\"doi\":\"10.1016/j.jfluidstructs.2024.104171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As a continuous and smooth morphing concept for aerofoils, the Fish Bone Active Camber (FishBAC) concept has demonstrated significant aerodynamic efficiency improvements over traditional hinged flaps. In this paper, to investigate the static and dynamic aeroelasticity of FishBAC aerofoils, an unsteady two dimensional coupled fluid-structure interaction model is developed, which includes the structural response of the FishBAC spine, skin, stringers, tendons and actuator, coupled to an unsteady aerodynamics model. The structural dynamic model is Timoshenko beam-theory-based, while the aerodynamic model is based on Peters’ unsteady model. The static and dynamic aeroelasticity is studied after the model is validated. Results show that the increase in pulley rotational angle reduces the zero-lift angle of attack, while keeping the slope between the lift coefficient and angle of attack the same. A shorter morphing region closer to the trailing edge is beneficial for generating larger lift coefficient with the same tendon moment and angle of attack. Flutter occurs with the increase of the air speed. When the morphing end position is fixed at 0.9 chord, increasing the morphing length reduces the critical flutter speed significantly, with the second bending mode tending to drive instability. With the same morphing length, moving the morphing region closer to the leading edge increases the critical flutter speed, and the unstable mode changes from the second mode into the first mode.</p></div>\",\"PeriodicalId\":54834,\"journal\":{\"name\":\"Journal of Fluids and Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0889974624001063/pdfft?md5=090d22a260c06cbbeb38cb166a7d3c09&pid=1-s2.0-S0889974624001063-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluids and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0889974624001063\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0889974624001063","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

与传统的铰链襟翼相比,鱼骨主动凸面(FishBAC)气动翼片作为一种连续平滑的气动翼片变形概念,在气动效率方面有显著提高。本文为研究鱼骨式主动凸缘气膜的静态和动态气动弹性,开发了一个非稳态二维耦合流固耦合模型,其中包括鱼骨式主动凸缘脊柱、蒙皮、弦杆、腱和致动器的结构响应,并与一个非稳态空气动力学模型耦合。结构动态模型基于季莫申科梁理论,而空气动力学模型基于彼得斯非稳态模型。模型通过验证后,对静态和动态气动弹性进行了研究。结果表明,滑轮旋转角的增加会减小零升力攻角,同时保持升力系数与攻角之间的斜率不变。靠近后缘的较短变形区域有利于在相同的腱矩和攻角下产生较大的升力系数。随着气流速度的增加,会出现扑翼现象。当变形端位置固定在 0.9 弦处时,增加变形长度会显著降低临界扑翼速度,第二弯曲模式往往会导致不稳定。在变形长度相同的情况下,将变形区域移近前缘会增加临界扑翼速度,不稳定模式会从第二种模式变为第一种模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modelling and analysis of two-dimensional static and dynamic aeroelasticity of Fish Bone Active Camber morphing aerofoils

As a continuous and smooth morphing concept for aerofoils, the Fish Bone Active Camber (FishBAC) concept has demonstrated significant aerodynamic efficiency improvements over traditional hinged flaps. In this paper, to investigate the static and dynamic aeroelasticity of FishBAC aerofoils, an unsteady two dimensional coupled fluid-structure interaction model is developed, which includes the structural response of the FishBAC spine, skin, stringers, tendons and actuator, coupled to an unsteady aerodynamics model. The structural dynamic model is Timoshenko beam-theory-based, while the aerodynamic model is based on Peters’ unsteady model. The static and dynamic aeroelasticity is studied after the model is validated. Results show that the increase in pulley rotational angle reduces the zero-lift angle of attack, while keeping the slope between the lift coefficient and angle of attack the same. A shorter morphing region closer to the trailing edge is beneficial for generating larger lift coefficient with the same tendon moment and angle of attack. Flutter occurs with the increase of the air speed. When the morphing end position is fixed at 0.9 chord, increasing the morphing length reduces the critical flutter speed significantly, with the second bending mode tending to drive instability. With the same morphing length, moving the morphing region closer to the leading edge increases the critical flutter speed, and the unstable mode changes from the second mode into the first mode.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Fluids and Structures
Journal of Fluids and Structures 工程技术-工程:机械
CiteScore
6.90
自引率
8.30%
发文量
173
审稿时长
65 days
期刊介绍: The Journal of Fluids and Structures serves as a focal point and a forum for the exchange of ideas, for the many kinds of specialists and practitioners concerned with fluid–structure interactions and the dynamics of systems related thereto, in any field. One of its aims is to foster the cross–fertilization of ideas, methods and techniques in the various disciplines involved. The journal publishes papers that present original and significant contributions on all aspects of the mechanical interactions between fluids and solids, regardless of scale.
期刊最新文献
A new approach for spatio-temporal interface treatment in fluid–solid interaction using artificial neural networks employing coupled partitioned fluid–solid solvers Condensation solution method for fluid-structure interaction dynamic models of structural system Turbulence-induced vibration in annular flow of a rigid cylinder mounted on a cantilever beam Recurrent graph convolutional multi-mesh autoencoder for unsteady transonic aerodynamics On the characteristics of fluid flow field and oscillatory response of tuned liquid multi-column dampers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1