打结还是不打结?金属超分子结发光模拟的理论量子协议

IF 4.1 3区 化学 Q2 CHEMISTRY, PHYSICAL Journal of Photochemistry and Photobiology A-chemistry Pub Date : 2024-08-29 DOI:10.1016/j.jphotochem.2024.115978
{"title":"打结还是不打结?金属超分子结发光模拟的理论量子协议","authors":"","doi":"10.1016/j.jphotochem.2024.115978","DOIUrl":null,"url":null,"abstract":"<div><p>Entangled structures are topological architectures often observed not only in the macroscopic world, but also at the molecular level with many examples in biological systems (DNA, RNA). In recent decades, these fascinating entities have aroused considerable interest among chemists with the advent of metallo-supramolecular knots. Notwithstanding the burgeoning of such metal complexes in literature, their use as luminescent emitters as well as systematic studies on their luminescence properties are still extremely limited. In view of this, a theoretical DFT protocol dedicated to luminescence profile simulations of these peculiar “entwined” species is highly desirable. In this work, we propose a robust and affordable DFT computational workflow able to recreate meticulously the emission band-shape of different metallo-supramolecular knots. As a result of a preparatory DFT benchmark, we decided to use HSEH1PBE/LanL2DZ level via Born-Oppenheimer molecular dynamics to explore the change in the coordination environment around the metal centers in the excited state (S1). Thereupon, a detailed recruiting of TD-DFT functionals recommended the mPW3PBE/LanL2DZ level as the most precise and transferable method to model accurately metallo-supramolecular knots emission spectra as metal ions, internal spacers and interlocking modes vary.</p></div>","PeriodicalId":16782,"journal":{"name":"Journal of Photochemistry and Photobiology A-chemistry","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1010603024005227/pdfft?md5=2b0b603dd0fb02d2a3d67d40484a836f&pid=1-s2.0-S1010603024005227-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Knotted or unknotted? A theoretical quantum protocol for luminescence simulation of metallo-supramolecular knots\",\"authors\":\"\",\"doi\":\"10.1016/j.jphotochem.2024.115978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Entangled structures are topological architectures often observed not only in the macroscopic world, but also at the molecular level with many examples in biological systems (DNA, RNA). In recent decades, these fascinating entities have aroused considerable interest among chemists with the advent of metallo-supramolecular knots. Notwithstanding the burgeoning of such metal complexes in literature, their use as luminescent emitters as well as systematic studies on their luminescence properties are still extremely limited. In view of this, a theoretical DFT protocol dedicated to luminescence profile simulations of these peculiar “entwined” species is highly desirable. In this work, we propose a robust and affordable DFT computational workflow able to recreate meticulously the emission band-shape of different metallo-supramolecular knots. As a result of a preparatory DFT benchmark, we decided to use HSEH1PBE/LanL2DZ level via Born-Oppenheimer molecular dynamics to explore the change in the coordination environment around the metal centers in the excited state (S1). Thereupon, a detailed recruiting of TD-DFT functionals recommended the mPW3PBE/LanL2DZ level as the most precise and transferable method to model accurately metallo-supramolecular knots emission spectra as metal ions, internal spacers and interlocking modes vary.</p></div>\",\"PeriodicalId\":16782,\"journal\":{\"name\":\"Journal of Photochemistry and Photobiology A-chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1010603024005227/pdfft?md5=2b0b603dd0fb02d2a3d67d40484a836f&pid=1-s2.0-S1010603024005227-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Photochemistry and Photobiology A-chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1010603024005227\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology A-chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1010603024005227","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

纠缠结构是一种拓扑结构,不仅在宏观世界中经常被观察到,而且在分子水平上也经常被观察到,生物系统(DNA、RNA)中就有许多这样的例子。近几十年来,随着金属超分子结的出现,这些迷人的实体引起了化学家的极大兴趣。尽管这类金属复合物的文献数量激增,但将其用作发光体以及对其发光特性进行系统研究的研究成果仍然极为有限。有鉴于此,我们非常需要一种专门用于模拟这些奇特 "缠绕 "物种发光曲线的 DFT 理论方案。在这项工作中,我们提出了一种稳健且经济实惠的 DFT 计算工作流程,能够细致地再现不同金属超分子结的发射带形状。作为预备 DFT 基准的结果,我们决定通过 Born-Oppenheimer 分子动力学使用 HSEH1PBE/LanL2DZ 水平来探索激发态 (S1) 金属中心周围配位环境的变化。随后,通过对 TD-DFT 函数的详细研究,我们推荐使用 mPW3PBE/LanL2DZ 水平,它是最精确、最可移植的方法,可以随着金属离子、内部间隔和互锁模式的变化,精确模拟金属超分子结的发射光谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Knotted or unknotted? A theoretical quantum protocol for luminescence simulation of metallo-supramolecular knots

Entangled structures are topological architectures often observed not only in the macroscopic world, but also at the molecular level with many examples in biological systems (DNA, RNA). In recent decades, these fascinating entities have aroused considerable interest among chemists with the advent of metallo-supramolecular knots. Notwithstanding the burgeoning of such metal complexes in literature, their use as luminescent emitters as well as systematic studies on their luminescence properties are still extremely limited. In view of this, a theoretical DFT protocol dedicated to luminescence profile simulations of these peculiar “entwined” species is highly desirable. In this work, we propose a robust and affordable DFT computational workflow able to recreate meticulously the emission band-shape of different metallo-supramolecular knots. As a result of a preparatory DFT benchmark, we decided to use HSEH1PBE/LanL2DZ level via Born-Oppenheimer molecular dynamics to explore the change in the coordination environment around the metal centers in the excited state (S1). Thereupon, a detailed recruiting of TD-DFT functionals recommended the mPW3PBE/LanL2DZ level as the most precise and transferable method to model accurately metallo-supramolecular knots emission spectra as metal ions, internal spacers and interlocking modes vary.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
7.00%
发文量
580
审稿时长
48 days
期刊介绍: JPPA publishes the results of fundamental studies on all aspects of chemical phenomena induced by interactions between light and molecules/matter of all kinds. All systems capable of being described at the molecular or integrated multimolecular level are appropriate for the journal. This includes all molecular chemical species as well as biomolecular, supramolecular, polymer and other macromolecular systems, as well as solid state photochemistry. In addition, the journal publishes studies of semiconductor and other photoactive organic and inorganic materials, photocatalysis (organic, inorganic, supramolecular and superconductor). The scope includes condensed and gas phase photochemistry, as well as synchrotron radiation chemistry. A broad range of processes and techniques in photochemistry are covered such as light induced energy, electron and proton transfer; nonlinear photochemical behavior; mechanistic investigation of photochemical reactions and identification of the products of photochemical reactions; quantum yield determinations and measurements of rate constants for primary and secondary photochemical processes; steady-state and time-resolved emission, ultrafast spectroscopic methods, single molecule spectroscopy, time resolved X-ray diffraction, luminescence microscopy, and scattering spectroscopy applied to photochemistry. Papers in emerging and applied areas such as luminescent sensors, electroluminescence, solar energy conversion, atmospheric photochemistry, environmental remediation, and related photocatalytic chemistry are also welcome.
期刊最新文献
Editorial Board Photoelectrodegradation and sensing of pentachlorophenol using In and Mn metalated porphyrins in the presence of TiO2 nanoparticles Three multifunctional difluoroboron fluorescent dyes with five member N-heterocyclic ring for mechanofluorochromic behaviors, the ink-free writing and latent fingerprints imaging The role of process parameters on photooxidative degradation of 2,4-D herbicide using TiO2 nanoparticles: Kinetic and mechanistic study Insight into solvation-regulated emission: Dissecting the switchable ESIPT/ESPT mechanisms in HNT molecule
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1