Wei Tu , Dongsheng Chen , Rui Cao , Jizhe Xia , Yatao Zhang , Qingquan Li
{"title":"实现可持续发展目标 11:融合遥感、POI 和开放地理数据的大规模非正规住区地理和人口特征描述","authors":"Wei Tu , Dongsheng Chen , Rui Cao , Jizhe Xia , Yatao Zhang , Qingquan Li","doi":"10.1016/j.isprsjprs.2024.08.014","DOIUrl":null,"url":null,"abstract":"<div><p>Informal settlements’ geographic and demographic mapping is essential for evaluating human-centric sustainable development in cities, thus fostering the road to Sustainable Development Goal 11. However, fine-grained informal settlements’ geographic and demographic information is not well available. To fill the gap, this study proposes an effective framework for both fine-grained geographic and demographic characterisation of informal settlements by integrating openly available remote sensing imagery, points-of-interest (POI), and demographic data. Pixel-level informal settlement is firstly mapped by a hierarchical recognition method with satellite imagery and POI. The patch-scale and city-scale geographic patterns of informal settlements are further analysed with landscape metrics. Spatial-demographic profiles are depicted by linking with the open WorldPop dataset to reveal the demographic pattern. Taking the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) in China as the study area, the experiment demonstrates the effectiveness of informal settlement mapping, with an overall accuracy of 91.82%. The aggregated data and code are released (<span><span>https://github.com/DongshengChen9/IF4SDG11</span><svg><path></path></svg></span>). The demographic patterns of the informal settlements reveal that Guangzhou and Shenzhen, the two core cities in the GBA, concentrate more on young people living in the informal settlements. While the rapid-developing city Shenzhen shows a more significant trend of gender imbalance in the informal settlements. These findings provide valuable insights into monitoring informal settlements in the urban agglomeration and human-centric urban sustainable development, as well as SDG 11.1.1.</p></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"217 ","pages":"Pages 199-215"},"PeriodicalIF":10.6000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0924271624003253/pdfft?md5=ea26a3272c1484993048b4db670eff37&pid=1-s2.0-S0924271624003253-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Towards SDG 11: Large-scale geographic and demographic characterisation of informal settlements fusing remote sensing, POI, and open geo-data\",\"authors\":\"Wei Tu , Dongsheng Chen , Rui Cao , Jizhe Xia , Yatao Zhang , Qingquan Li\",\"doi\":\"10.1016/j.isprsjprs.2024.08.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Informal settlements’ geographic and demographic mapping is essential for evaluating human-centric sustainable development in cities, thus fostering the road to Sustainable Development Goal 11. However, fine-grained informal settlements’ geographic and demographic information is not well available. To fill the gap, this study proposes an effective framework for both fine-grained geographic and demographic characterisation of informal settlements by integrating openly available remote sensing imagery, points-of-interest (POI), and demographic data. Pixel-level informal settlement is firstly mapped by a hierarchical recognition method with satellite imagery and POI. The patch-scale and city-scale geographic patterns of informal settlements are further analysed with landscape metrics. Spatial-demographic profiles are depicted by linking with the open WorldPop dataset to reveal the demographic pattern. Taking the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) in China as the study area, the experiment demonstrates the effectiveness of informal settlement mapping, with an overall accuracy of 91.82%. The aggregated data and code are released (<span><span>https://github.com/DongshengChen9/IF4SDG11</span><svg><path></path></svg></span>). The demographic patterns of the informal settlements reveal that Guangzhou and Shenzhen, the two core cities in the GBA, concentrate more on young people living in the informal settlements. While the rapid-developing city Shenzhen shows a more significant trend of gender imbalance in the informal settlements. These findings provide valuable insights into monitoring informal settlements in the urban agglomeration and human-centric urban sustainable development, as well as SDG 11.1.1.</p></div>\",\"PeriodicalId\":50269,\"journal\":{\"name\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"volume\":\"217 \",\"pages\":\"Pages 199-215\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0924271624003253/pdfft?md5=ea26a3272c1484993048b4db670eff37&pid=1-s2.0-S0924271624003253-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924271624003253\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924271624003253","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
Towards SDG 11: Large-scale geographic and demographic characterisation of informal settlements fusing remote sensing, POI, and open geo-data
Informal settlements’ geographic and demographic mapping is essential for evaluating human-centric sustainable development in cities, thus fostering the road to Sustainable Development Goal 11. However, fine-grained informal settlements’ geographic and demographic information is not well available. To fill the gap, this study proposes an effective framework for both fine-grained geographic and demographic characterisation of informal settlements by integrating openly available remote sensing imagery, points-of-interest (POI), and demographic data. Pixel-level informal settlement is firstly mapped by a hierarchical recognition method with satellite imagery and POI. The patch-scale and city-scale geographic patterns of informal settlements are further analysed with landscape metrics. Spatial-demographic profiles are depicted by linking with the open WorldPop dataset to reveal the demographic pattern. Taking the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) in China as the study area, the experiment demonstrates the effectiveness of informal settlement mapping, with an overall accuracy of 91.82%. The aggregated data and code are released (https://github.com/DongshengChen9/IF4SDG11). The demographic patterns of the informal settlements reveal that Guangzhou and Shenzhen, the two core cities in the GBA, concentrate more on young people living in the informal settlements. While the rapid-developing city Shenzhen shows a more significant trend of gender imbalance in the informal settlements. These findings provide valuable insights into monitoring informal settlements in the urban agglomeration and human-centric urban sustainable development, as well as SDG 11.1.1.
期刊介绍:
The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive.
P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields.
In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.