以数据为导向的分段混凝土接缝抗剪承载力研究

IF 3.9 2区 工程技术 Q1 ENGINEERING, CIVIL Structures Pub Date : 2024-08-27 DOI:10.1016/j.istruc.2024.107145
{"title":"以数据为导向的分段混凝土接缝抗剪承载力研究","authors":"","doi":"10.1016/j.istruc.2024.107145","DOIUrl":null,"url":null,"abstract":"<div><p>Segmental assembly joints with excellent shear bearing capacity are the key to ensure the integrity of precast concrete girder bridges, which directly affects the force transmission state of the girders. However, with the existence of unfavorable factors such as the multi-key shear capacity reduction effect, the traditional prediction model for calculating the concrete joints shear capacity has poor prediction accuracy and large dispersion. To overcome the shortcomings of the existing prediction model, this study established a database consisting of 311 sets of test data and 110 sets of numerical results based on existing research. A total of seven data-driven models for predicting shear capacity of concrete joints were trained and generated based on the database, namely, two linear models (Linear Regression Support Vector Machine Algorithm, Least Squares Linear Regression) and five nonlinear models (Neural Network Bayesian Regularization; Neural Network Quantized Conjugate Gradient Model, Neural Network Levenberg-Marquardt (LM), Decision Tree, and Gaussian regression). The coefficient of determination (<em><strong>R</strong></em><sup><em><strong>2</strong></em></sup>), root mean square error (<em><strong>RMSE</strong></em>),mean absolute error (<em><strong>MAE</strong></em>), error range (<em><strong>A20-index</strong>)</em>, and error analysis were adopted to evaluate those model's performance. The evaluation results show that the LM model has excellent prediction accuracy, stability, robustness, and can guide the engineering design. Finally, the established database (421 data sets) and trained LM algorithm model were open sourse in this study to promot the investigate of precast concrete structures.</p></div>","PeriodicalId":48642,"journal":{"name":"Structures","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-driven study on shear bearing capacity of segmental concrete joints\",\"authors\":\"\",\"doi\":\"10.1016/j.istruc.2024.107145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Segmental assembly joints with excellent shear bearing capacity are the key to ensure the integrity of precast concrete girder bridges, which directly affects the force transmission state of the girders. However, with the existence of unfavorable factors such as the multi-key shear capacity reduction effect, the traditional prediction model for calculating the concrete joints shear capacity has poor prediction accuracy and large dispersion. To overcome the shortcomings of the existing prediction model, this study established a database consisting of 311 sets of test data and 110 sets of numerical results based on existing research. A total of seven data-driven models for predicting shear capacity of concrete joints were trained and generated based on the database, namely, two linear models (Linear Regression Support Vector Machine Algorithm, Least Squares Linear Regression) and five nonlinear models (Neural Network Bayesian Regularization; Neural Network Quantized Conjugate Gradient Model, Neural Network Levenberg-Marquardt (LM), Decision Tree, and Gaussian regression). The coefficient of determination (<em><strong>R</strong></em><sup><em><strong>2</strong></em></sup>), root mean square error (<em><strong>RMSE</strong></em>),mean absolute error (<em><strong>MAE</strong></em>), error range (<em><strong>A20-index</strong>)</em>, and error analysis were adopted to evaluate those model's performance. The evaluation results show that the LM model has excellent prediction accuracy, stability, robustness, and can guide the engineering design. Finally, the established database (421 data sets) and trained LM algorithm model were open sourse in this study to promot the investigate of precast concrete structures.</p></div>\",\"PeriodicalId\":48642,\"journal\":{\"name\":\"Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352012424012979\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352012424012979","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

具有优异抗剪承载力的节段拼装缝是保证预制混凝土梁桥整体性的关键,直接影响梁体的传力状态。然而,由于多键抗剪承载力降低效应等不利因素的存在,传统的混凝土接缝抗剪承载力预测计算模型存在预测精度差、离散性大等问题。为克服现有预测模型的不足,本研究在已有研究的基础上,建立了由 311 组试验数据和 110 组数值结果组成的数据库。基于数据库,共训练生成了 7 个数据驱动的混凝土接头抗剪能力预测模型,即 2 个线性模型(线性回归支持向量机算法、最小二乘线性回归)和 5 个非线性模型(神经网络贝叶斯正则化、神经网络量化共轭梯度模型、神经网络 Levenberg-Marquardt (LM)、决策树和高斯回归)。采用判定系数(R2)、均方根误差(RMSE)、平均绝对误差(MAE)、误差范围(A20-指数)和误差分析来评价这些模型的性能。评估结果表明,LM 模型具有出色的预测精度、稳定性和鲁棒性,可以指导工程设计。最后,本研究开放了已建立的数据库(421 个数据集)和训练有素的 LM 算法模型,以促进对预制混凝土结构的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data-driven study on shear bearing capacity of segmental concrete joints

Segmental assembly joints with excellent shear bearing capacity are the key to ensure the integrity of precast concrete girder bridges, which directly affects the force transmission state of the girders. However, with the existence of unfavorable factors such as the multi-key shear capacity reduction effect, the traditional prediction model for calculating the concrete joints shear capacity has poor prediction accuracy and large dispersion. To overcome the shortcomings of the existing prediction model, this study established a database consisting of 311 sets of test data and 110 sets of numerical results based on existing research. A total of seven data-driven models for predicting shear capacity of concrete joints were trained and generated based on the database, namely, two linear models (Linear Regression Support Vector Machine Algorithm, Least Squares Linear Regression) and five nonlinear models (Neural Network Bayesian Regularization; Neural Network Quantized Conjugate Gradient Model, Neural Network Levenberg-Marquardt (LM), Decision Tree, and Gaussian regression). The coefficient of determination (R2), root mean square error (RMSE),mean absolute error (MAE), error range (A20-index), and error analysis were adopted to evaluate those model's performance. The evaluation results show that the LM model has excellent prediction accuracy, stability, robustness, and can guide the engineering design. Finally, the established database (421 data sets) and trained LM algorithm model were open sourse in this study to promot the investigate of precast concrete structures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Structures
Structures Engineering-Architecture
CiteScore
5.70
自引率
17.10%
发文量
1187
期刊介绍: Structures aims to publish internationally-leading research across the full breadth of structural engineering. Papers for Structures are particularly welcome in which high-quality research will benefit from wide readership of academics and practitioners such that not only high citation rates but also tangible industrial-related pathways to impact are achieved.
期刊最新文献
Experimental study on acoustic emission damage in precast reinforced concrete interior joints containing disc springs Experimental and numerical studies on the mechanical behavior of metallic connecting pieces in point-supported glass facades A new cross section hypothesis-based approach for quantifying deployment characteristics of deployable inflatable structures Numerical study on seismic performance of a prefabricated subway station considering the influence of construction process Investigation on shear performance of sliding-type rapid segmental joints for shield tunnels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1