光学超分辨率成像:回顾与展望

IF 3.5 2区 工程技术 Q2 OPTICS Optics and Lasers in Engineering Pub Date : 2024-08-31 DOI:10.1016/j.optlaseng.2024.108536
{"title":"光学超分辨率成像:回顾与展望","authors":"","doi":"10.1016/j.optlaseng.2024.108536","DOIUrl":null,"url":null,"abstract":"<div><p>In this comprehensive review, we delve into super-resolution optical imaging techniques and their diverse applications. Our primary focus is on linear optics super-resolution methods, encompassing a wide array of concepts ranging from time multiplexing, ptychography, and deep learning-based microscopy to compressive sensing and random phase encoding techniques. Additionally, we explore compressed sensing, non-spatial resolution improvement, and sparsity-based geometric super-resolution. Furthermore, we investigate various methods based on field of view, wavelength, coherence, polarization, gray level, and code division multiplexing, as well as localization microscopy. Our review extends to stimulated emission depletion microscopy via pump-probe super-resolution techniques, providing a detailed analysis of their working applications. We then shift our attention to near-field scanning optical microscopy, discussing its principles and applications in various fields. Recent techniques such as Microsphere-assisted microscopy, Airyscan, mean-shift super-resolution, photothermal relaxation localization microscopy, and a novel structured illumination-based super-resolution technique enables tomography of semi-transparent samples by investigating their refractive index thus providing a 3D map of the samples. Moreover, we examine the concept of super-resolution in a nonlinear medium, highlighting its unique characteristics and potential benefits. Finally, we discuss the future perspectives and trends of super-resolution optical imaging, offering insights into its potential evolution and impact on the field.</p></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optical super-resolution imaging: A review and perspective\",\"authors\":\"\",\"doi\":\"10.1016/j.optlaseng.2024.108536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this comprehensive review, we delve into super-resolution optical imaging techniques and their diverse applications. Our primary focus is on linear optics super-resolution methods, encompassing a wide array of concepts ranging from time multiplexing, ptychography, and deep learning-based microscopy to compressive sensing and random phase encoding techniques. Additionally, we explore compressed sensing, non-spatial resolution improvement, and sparsity-based geometric super-resolution. Furthermore, we investigate various methods based on field of view, wavelength, coherence, polarization, gray level, and code division multiplexing, as well as localization microscopy. Our review extends to stimulated emission depletion microscopy via pump-probe super-resolution techniques, providing a detailed analysis of their working applications. We then shift our attention to near-field scanning optical microscopy, discussing its principles and applications in various fields. Recent techniques such as Microsphere-assisted microscopy, Airyscan, mean-shift super-resolution, photothermal relaxation localization microscopy, and a novel structured illumination-based super-resolution technique enables tomography of semi-transparent samples by investigating their refractive index thus providing a 3D map of the samples. Moreover, we examine the concept of super-resolution in a nonlinear medium, highlighting its unique characteristics and potential benefits. Finally, we discuss the future perspectives and trends of super-resolution optical imaging, offering insights into its potential evolution and impact on the field.</p></div>\",\"PeriodicalId\":49719,\"journal\":{\"name\":\"Optics and Lasers in Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics and Lasers in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0143816624005141\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Lasers in Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143816624005141","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

在这篇综述中,我们深入探讨了超分辨率光学成像技术及其各种应用。我们的主要重点是线性光学超分辨率方法,涵盖了从时间多路复用、纵横交错、基于深度学习的显微镜到压缩传感和随机相位编码技术等一系列概念。此外,我们还探索了压缩传感、非空间分辨率改进和基于稀疏性的几何超分辨率。此外,我们还研究了基于视场、波长、相干、偏振、灰度和码分复用以及定位显微镜的各种方法。我们的综述延伸到通过泵探针超分辨技术的受激发射耗损显微镜,对其工作应用进行了详细分析。然后,我们将注意力转移到近场扫描光学显微镜,讨论其原理和在各个领域的应用。微球辅助显微镜、Airyscan、均值偏移超分辨、光热弛豫定位显微镜等最新技术,以及一种基于结构照明的新型超分辨技术,可通过研究半透明样品的折射率对其进行层析成像,从而提供样品的三维地图。此外,我们还研究了非线性介质中的超分辨率概念,强调了它的独特性和潜在优势。最后,我们讨论了超分辨光学成像的未来前景和趋势,深入探讨了其潜在的发展和对该领域的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optical super-resolution imaging: A review and perspective

In this comprehensive review, we delve into super-resolution optical imaging techniques and their diverse applications. Our primary focus is on linear optics super-resolution methods, encompassing a wide array of concepts ranging from time multiplexing, ptychography, and deep learning-based microscopy to compressive sensing and random phase encoding techniques. Additionally, we explore compressed sensing, non-spatial resolution improvement, and sparsity-based geometric super-resolution. Furthermore, we investigate various methods based on field of view, wavelength, coherence, polarization, gray level, and code division multiplexing, as well as localization microscopy. Our review extends to stimulated emission depletion microscopy via pump-probe super-resolution techniques, providing a detailed analysis of their working applications. We then shift our attention to near-field scanning optical microscopy, discussing its principles and applications in various fields. Recent techniques such as Microsphere-assisted microscopy, Airyscan, mean-shift super-resolution, photothermal relaxation localization microscopy, and a novel structured illumination-based super-resolution technique enables tomography of semi-transparent samples by investigating their refractive index thus providing a 3D map of the samples. Moreover, we examine the concept of super-resolution in a nonlinear medium, highlighting its unique characteristics and potential benefits. Finally, we discuss the future perspectives and trends of super-resolution optical imaging, offering insights into its potential evolution and impact on the field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optics and Lasers in Engineering
Optics and Lasers in Engineering 工程技术-光学
CiteScore
8.90
自引率
8.70%
发文量
384
审稿时长
42 days
期刊介绍: Optics and Lasers in Engineering aims at providing an international forum for the interchange of information on the development of optical techniques and laser technology in engineering. Emphasis is placed on contributions targeted at the practical use of methods and devices, the development and enhancement of solutions and new theoretical concepts for experimental methods. Optics and Lasers in Engineering reflects the main areas in which optical methods are being used and developed for an engineering environment. Manuscripts should offer clear evidence of novelty and significance. Papers focusing on parameter optimization or computational issues are not suitable. Similarly, papers focussed on an application rather than the optical method fall outside the journal''s scope. The scope of the journal is defined to include the following: -Optical Metrology- Optical Methods for 3D visualization and virtual engineering- Optical Techniques for Microsystems- Imaging, Microscopy and Adaptive Optics- Computational Imaging- Laser methods in manufacturing- Integrated optical and photonic sensors- Optics and Photonics in Life Science- Hyperspectral and spectroscopic methods- Infrared and Terahertz techniques
期刊最新文献
Stress measurement and simulation of the key silicon-based structures based on infrared photoelasticity A laser stripe segmentation algorithm for wheel tread profile of rail vehicles under ambient light interference Endoir: A GAN-based method for fiber bundle endoscope image restoration Performance of underwater wireless optical communication using Bessel beams and acousto-optic modulator Adaptive time resolved correlation technique for non-equilibrium dynamics of epoxy resin curing evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1