Pengnan Wang , Gao Lin , Zhiqiang Hu , Yanpeng Li , Zhiyuan Li
{"title":"求解非水平分层半空间地震响应的新方法","authors":"Pengnan Wang , Gao Lin , Zhiqiang Hu , Yanpeng Li , Zhiyuan Li","doi":"10.1016/j.enganabound.2024.105926","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a novel method is developed to solve the free-field motion of the non-horizontally layered half-space subjected to seismic excitation in the time domain. The total wave motions are decomposed into a known and an unknown wave motion. Making use of the fact that the nodal forces at nodes in half-space resulted from the two motions will be zeros, the scattering problem resulted from the seismic excitation is transformed into a radiation problem. The radiation damping of the unbounded layered foundation in the time domain is expressed by the acceleration unit-impulse response matrix obtained using the scaling surface based Scaled Boundary Finite Element Method (SBFEM). In the numerical examples, firstly, the accuracy of the scaling surfaced based SBFEM in simulating the radiation damping is demonstrated by surface excitations in the layered half-space. Then, a time-domain analysis of the free-field motion of a horizontally layered half-space is studied to verify the accuracy and validity of the proposed method. Finally, a study of the free-field motion of non-horizontally layered half-space is investigated, and the results show that increasing the dimensions of the computational domain can significantly improve the accuracy.</p></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":"168 ","pages":"Article 105926"},"PeriodicalIF":4.2000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel method for solving the seismic response of non-horizontally layered half-space\",\"authors\":\"Pengnan Wang , Gao Lin , Zhiqiang Hu , Yanpeng Li , Zhiyuan Li\",\"doi\":\"10.1016/j.enganabound.2024.105926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, a novel method is developed to solve the free-field motion of the non-horizontally layered half-space subjected to seismic excitation in the time domain. The total wave motions are decomposed into a known and an unknown wave motion. Making use of the fact that the nodal forces at nodes in half-space resulted from the two motions will be zeros, the scattering problem resulted from the seismic excitation is transformed into a radiation problem. The radiation damping of the unbounded layered foundation in the time domain is expressed by the acceleration unit-impulse response matrix obtained using the scaling surface based Scaled Boundary Finite Element Method (SBFEM). In the numerical examples, firstly, the accuracy of the scaling surfaced based SBFEM in simulating the radiation damping is demonstrated by surface excitations in the layered half-space. Then, a time-domain analysis of the free-field motion of a horizontally layered half-space is studied to verify the accuracy and validity of the proposed method. Finally, a study of the free-field motion of non-horizontally layered half-space is investigated, and the results show that increasing the dimensions of the computational domain can significantly improve the accuracy.</p></div>\",\"PeriodicalId\":51039,\"journal\":{\"name\":\"Engineering Analysis with Boundary Elements\",\"volume\":\"168 \",\"pages\":\"Article 105926\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Analysis with Boundary Elements\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0955799724004004\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Analysis with Boundary Elements","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955799724004004","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A novel method for solving the seismic response of non-horizontally layered half-space
In this paper, a novel method is developed to solve the free-field motion of the non-horizontally layered half-space subjected to seismic excitation in the time domain. The total wave motions are decomposed into a known and an unknown wave motion. Making use of the fact that the nodal forces at nodes in half-space resulted from the two motions will be zeros, the scattering problem resulted from the seismic excitation is transformed into a radiation problem. The radiation damping of the unbounded layered foundation in the time domain is expressed by the acceleration unit-impulse response matrix obtained using the scaling surface based Scaled Boundary Finite Element Method (SBFEM). In the numerical examples, firstly, the accuracy of the scaling surfaced based SBFEM in simulating the radiation damping is demonstrated by surface excitations in the layered half-space. Then, a time-domain analysis of the free-field motion of a horizontally layered half-space is studied to verify the accuracy and validity of the proposed method. Finally, a study of the free-field motion of non-horizontally layered half-space is investigated, and the results show that increasing the dimensions of the computational domain can significantly improve the accuracy.
期刊介绍:
This journal is specifically dedicated to the dissemination of the latest developments of new engineering analysis techniques using boundary elements and other mesh reduction methods.
Boundary element (BEM) and mesh reduction methods (MRM) are very active areas of research with the techniques being applied to solve increasingly complex problems. The journal stresses the importance of these applications as well as their computational aspects, reliability and robustness.
The main criteria for publication will be the originality of the work being reported, its potential usefulness and applications of the methods to new fields.
In addition to regular issues, the journal publishes a series of special issues dealing with specific areas of current research.
The journal has, for many years, provided a channel of communication between academics and industrial researchers working in mesh reduction methods
Fields Covered:
• Boundary Element Methods (BEM)
• Mesh Reduction Methods (MRM)
• Meshless Methods
• Integral Equations
• Applications of BEM/MRM in Engineering
• Numerical Methods related to BEM/MRM
• Computational Techniques
• Combination of Different Methods
• Advanced Formulations.