{"title":"BRD4缺失会导致内质网应激失活,从而通过GRP78延缓脱氢表雄酮诱发的多囊卵巢综合征卵巢颗粒细胞凋亡","authors":"Yi Zhang , Jianjun Wang","doi":"10.1016/j.tice.2024.102531","DOIUrl":null,"url":null,"abstract":"<div><p>Polycystic ovary syndrome (PCOS) is a hormonal disorder and significantly affects reproductive and metabolic function. Bromodomain-containing protein 4 (BRD4) is reported to promote ovarian fibrosis in PCOS. The present work was conducted to investigate the detailed role of BRD4 and the corresponding functional mechanism in PCOS. Functional experiments including CCK-8 method, EDU staining and TUNEL staining were used to detect the key cellular processes. Western blot examined the expression of BRD4, apoptosis- and endoplasmic reticulum stress (ERS)-associated proteins. HDOCK server predicted the binding of BRD4 with Glucose-Regulated Protein 78 (GRP78), which was validated by Co-IP assay. BRD4 expression was increased and ERS was activated in dehydroepiandrosterone (DHEA)-induced KGN cells. Inhibition of BRD4 improved the viability whereas it inhibited the apoptosis and ERS of KGN cells induced by DHEA. In addition, BRD4 bound to GRP78. GRP78 elevation or ERS activator tunicamycin (TM) partly abolished the impacts of BRD4 silencing on the ERS, proliferation and apoptosis in DHEA-treated KGN cells. Anyway, knockdown of BRD4 may reduce DHEA-induced ovarian granular cell damage in PCOS via inactivating GRP78-mediated ERS.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BRD4 absence inactivates endoplasmic reticulum stress to retard dehydroepiandrosterone-triggered ovarian granular cell apoptosis in polycystic ovary syndrome via GRP78\",\"authors\":\"Yi Zhang , Jianjun Wang\",\"doi\":\"10.1016/j.tice.2024.102531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Polycystic ovary syndrome (PCOS) is a hormonal disorder and significantly affects reproductive and metabolic function. Bromodomain-containing protein 4 (BRD4) is reported to promote ovarian fibrosis in PCOS. The present work was conducted to investigate the detailed role of BRD4 and the corresponding functional mechanism in PCOS. Functional experiments including CCK-8 method, EDU staining and TUNEL staining were used to detect the key cellular processes. Western blot examined the expression of BRD4, apoptosis- and endoplasmic reticulum stress (ERS)-associated proteins. HDOCK server predicted the binding of BRD4 with Glucose-Regulated Protein 78 (GRP78), which was validated by Co-IP assay. BRD4 expression was increased and ERS was activated in dehydroepiandrosterone (DHEA)-induced KGN cells. Inhibition of BRD4 improved the viability whereas it inhibited the apoptosis and ERS of KGN cells induced by DHEA. In addition, BRD4 bound to GRP78. GRP78 elevation or ERS activator tunicamycin (TM) partly abolished the impacts of BRD4 silencing on the ERS, proliferation and apoptosis in DHEA-treated KGN cells. Anyway, knockdown of BRD4 may reduce DHEA-induced ovarian granular cell damage in PCOS via inactivating GRP78-mediated ERS.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040816624002325\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040816624002325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
BRD4 absence inactivates endoplasmic reticulum stress to retard dehydroepiandrosterone-triggered ovarian granular cell apoptosis in polycystic ovary syndrome via GRP78
Polycystic ovary syndrome (PCOS) is a hormonal disorder and significantly affects reproductive and metabolic function. Bromodomain-containing protein 4 (BRD4) is reported to promote ovarian fibrosis in PCOS. The present work was conducted to investigate the detailed role of BRD4 and the corresponding functional mechanism in PCOS. Functional experiments including CCK-8 method, EDU staining and TUNEL staining were used to detect the key cellular processes. Western blot examined the expression of BRD4, apoptosis- and endoplasmic reticulum stress (ERS)-associated proteins. HDOCK server predicted the binding of BRD4 with Glucose-Regulated Protein 78 (GRP78), which was validated by Co-IP assay. BRD4 expression was increased and ERS was activated in dehydroepiandrosterone (DHEA)-induced KGN cells. Inhibition of BRD4 improved the viability whereas it inhibited the apoptosis and ERS of KGN cells induced by DHEA. In addition, BRD4 bound to GRP78. GRP78 elevation or ERS activator tunicamycin (TM) partly abolished the impacts of BRD4 silencing on the ERS, proliferation and apoptosis in DHEA-treated KGN cells. Anyway, knockdown of BRD4 may reduce DHEA-induced ovarian granular cell damage in PCOS via inactivating GRP78-mediated ERS.