Edison S. Magalhães , Danyang Zhang , Cesar A.A. Moura , Giovani Trevisan , Derald J. Holtkamp , Will A. López , Chong Wang , Daniel C.L. Linhares , Gustavo S. Silva
{"title":"利用机器学习算法开发猪断奶质量评分,以描述和划分野外条件下死亡风险较高的群体","authors":"Edison S. Magalhães , Danyang Zhang , Cesar A.A. Moura , Giovani Trevisan , Derald J. Holtkamp , Will A. López , Chong Wang , Daniel C.L. Linhares , Gustavo S. Silva","doi":"10.1016/j.prevetmed.2024.106327","DOIUrl":null,"url":null,"abstract":"<div><p>Mortality during the post-weaning phase is a critical indicator of swine production system performance, influenced by a complex interaction of multiple factors of the epidemiological triad. This study leveraged retrospective data from 1723 groups of pigs marketed within a US swine production system to develop a Wean-Quality Score (WQS) using machine learning techniques. The study evaluated three machine learning models, Random Forest, Support Vector Machine, and Gradient Boosting Machine, to classify groups having high or low 60-day mortality, where high mortality groups represented 25 % of the groups among the study population with the highest mortality values (n=431; 60-day mortality=9.98 %), and the remaining 75 % of the groups were of low mortality (n=1292; 60-day mortality=2.75 %). The best-performing model, Random Forest (RF), outperformed the other ML models in terms of accuracy (0.90), sensitivity (0.84), and specificity (0.92) metrics, and was then selected for further analysis, which consisted of creating the WQS and ranking the most important factors for classifying groups as high or low mortality. The most important factors ranked through the RF model to classify groups with high mortality were pre-weaning mortality, weaning age, average parity of litters in sow farms, and PRRS status. Additionally, stocking conditions such as stocking density and time to fill the barn were important predictors of high mortality. The WQS was developed and correlated (r = 0.74) with the actual 60-day mortality of the groups, offering a valuable tool for assessing post-weaning survivability in swine production systems before weaning. This study highlights the potential of machine learning and comprehensive data utilization to improve the assessment and management of weaned pig quality in commercial swine production, which producers can utilize to identify and intervene in groups, according to the WQS.</p></div>","PeriodicalId":20413,"journal":{"name":"Preventive veterinary medicine","volume":"232 ","pages":"Article 106327"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a pig wean-quality score using machine-learning algorithms to characterize and classify groups with high mortality risk under field conditions\",\"authors\":\"Edison S. Magalhães , Danyang Zhang , Cesar A.A. Moura , Giovani Trevisan , Derald J. Holtkamp , Will A. López , Chong Wang , Daniel C.L. Linhares , Gustavo S. Silva\",\"doi\":\"10.1016/j.prevetmed.2024.106327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mortality during the post-weaning phase is a critical indicator of swine production system performance, influenced by a complex interaction of multiple factors of the epidemiological triad. This study leveraged retrospective data from 1723 groups of pigs marketed within a US swine production system to develop a Wean-Quality Score (WQS) using machine learning techniques. The study evaluated three machine learning models, Random Forest, Support Vector Machine, and Gradient Boosting Machine, to classify groups having high or low 60-day mortality, where high mortality groups represented 25 % of the groups among the study population with the highest mortality values (n=431; 60-day mortality=9.98 %), and the remaining 75 % of the groups were of low mortality (n=1292; 60-day mortality=2.75 %). The best-performing model, Random Forest (RF), outperformed the other ML models in terms of accuracy (0.90), sensitivity (0.84), and specificity (0.92) metrics, and was then selected for further analysis, which consisted of creating the WQS and ranking the most important factors for classifying groups as high or low mortality. The most important factors ranked through the RF model to classify groups with high mortality were pre-weaning mortality, weaning age, average parity of litters in sow farms, and PRRS status. Additionally, stocking conditions such as stocking density and time to fill the barn were important predictors of high mortality. The WQS was developed and correlated (r = 0.74) with the actual 60-day mortality of the groups, offering a valuable tool for assessing post-weaning survivability in swine production systems before weaning. This study highlights the potential of machine learning and comprehensive data utilization to improve the assessment and management of weaned pig quality in commercial swine production, which producers can utilize to identify and intervene in groups, according to the WQS.</p></div>\",\"PeriodicalId\":20413,\"journal\":{\"name\":\"Preventive veterinary medicine\",\"volume\":\"232 \",\"pages\":\"Article 106327\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Preventive veterinary medicine\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167587724002137\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"VETERINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Preventive veterinary medicine","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167587724002137","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
Development of a pig wean-quality score using machine-learning algorithms to characterize and classify groups with high mortality risk under field conditions
Mortality during the post-weaning phase is a critical indicator of swine production system performance, influenced by a complex interaction of multiple factors of the epidemiological triad. This study leveraged retrospective data from 1723 groups of pigs marketed within a US swine production system to develop a Wean-Quality Score (WQS) using machine learning techniques. The study evaluated three machine learning models, Random Forest, Support Vector Machine, and Gradient Boosting Machine, to classify groups having high or low 60-day mortality, where high mortality groups represented 25 % of the groups among the study population with the highest mortality values (n=431; 60-day mortality=9.98 %), and the remaining 75 % of the groups were of low mortality (n=1292; 60-day mortality=2.75 %). The best-performing model, Random Forest (RF), outperformed the other ML models in terms of accuracy (0.90), sensitivity (0.84), and specificity (0.92) metrics, and was then selected for further analysis, which consisted of creating the WQS and ranking the most important factors for classifying groups as high or low mortality. The most important factors ranked through the RF model to classify groups with high mortality were pre-weaning mortality, weaning age, average parity of litters in sow farms, and PRRS status. Additionally, stocking conditions such as stocking density and time to fill the barn were important predictors of high mortality. The WQS was developed and correlated (r = 0.74) with the actual 60-day mortality of the groups, offering a valuable tool for assessing post-weaning survivability in swine production systems before weaning. This study highlights the potential of machine learning and comprehensive data utilization to improve the assessment and management of weaned pig quality in commercial swine production, which producers can utilize to identify and intervene in groups, according to the WQS.
期刊介绍:
Preventive Veterinary Medicine is one of the leading international resources for scientific reports on animal health programs and preventive veterinary medicine. The journal follows the guidelines for standardizing and strengthening the reporting of biomedical research which are available from the CONSORT, MOOSE, PRISMA, REFLECT, STARD, and STROBE statements. The journal focuses on:
Epidemiology of health events relevant to domestic and wild animals;
Economic impacts of epidemic and endemic animal and zoonotic diseases;
Latest methods and approaches in veterinary epidemiology;
Disease and infection control or eradication measures;
The "One Health" concept and the relationships between veterinary medicine, human health, animal-production systems, and the environment;
Development of new techniques in surveillance systems and diagnosis;
Evaluation and control of diseases in animal populations.